in

Comparison of soil and corn residue cutting performance of different discs used for vertical tillage

The results of ANOVA tests were summarised in Table 1. None of the interaction effect was significant. Therefore, the main effects of disc type and working depth were presented in the following sections.

Table 1 Summary of ANOVA test results.

Full size table

Soil cutting forces

The rippled disc required an average draft force of 675 N, which was numerically the highest among the discs (Fig. 1a). The notched disc had a minimal draft force demand of 579 N. Increasing the working depth from the shallow (63.5 mm) to deep (127 mm) resulted in the draft force increasing from 291 to 965 N. This more-than-tripled increase was significant and can be explained by the soil dynamics theory that draft force varies with the contact area between soil and tool22. The rippled edge slightly increased the surface area as compared to the smooth edge, while the notched edge slightly decreased the contact area due to the notches. As for the depth effect, a deeper operation significantly increased the portion of the disc in contact with soil regardless of the disc type.

Figure 1

Soil cutting forces of different discs at different working depths: (a) draft force, (b) vertical force, and (c) lateral force; means followed by different lower case letters or upper case letters are significantly different according to Tukey’s test at the significance level of 0.05; error bars are standard deviations.

Full size image

All the vertical forces measured were positive, which indicated that they were acting on the disc in the downward direction (Fig. 1b) that favored the disc penetration into the soil. The rippled disc had the maximal vertical force of 289 N, which will help to maintain its working depth as compared to the other two discs. As was expected, the notched disc experienced the minimal vertical force of 164 N, which was lower than that of the rippled disc. The plain disc had a medium vertical force, which was not different from the other two discs. The lower vertical force of the notched disc may not necessarily affect its superior ability of soil penetration. The deep working depth created a 65.9% higher vertical force as compared to the shallow depth. The vertical forces of similar magnitudes were also observed in previous studies, such as approximately 200 N in Nalavade et al.23.

There were no significant differences among the discs in terms of the lateral force (Fig. 1c). The notched disc had the minimal lateral force of 215 N. The lateral force increased roughly twofold from 171 to 347 N as the disc was operated from the shallow to deep depths, which was significant. The insignificant difference in the lateral force among the discs was partially attributed to their identical disc angles and similar concavity. Lower lateral forces are usually desired in terms of the frame stability of the implement. The increase of the lateral force as the depth increased indicated a great deal of attention must be paid on the frame strength when designing the disc for deep tillage application.

The soil cutting forces were resultant forces of passive cutting reaction on the concave face and the scrubbing reaction on the convex face for a concave disc24. Both the cutting force and scrubbing force acted at some angle between the horizontal and vertical directions. The projected soil cutting force was against the travel direction in the horizontal direction and downward in the vertical direction; on the other hand, the projected scrubbing force is along the travel direction and upward. The resultant draft force was against the travel direction and the resultant vertical force was downward, which was the same as that of the cutting force. This agreed with the literature that the scrubbing force on the trailing convex side of the disc tends to be minor compared to the cutting force on the leading concave side of the disc22. However, the soil cutting forces were smaller than those reported in Godwin et al.25. The combination of shallow concavity and small disc angle used in this study possibly helped in reducing the soil cutting forces in all three directions. The results agreed with that in Choi and Erback20, where the notched disc had the least forces and the forces were more dependent on the working depth than the disc shape.

Soil displacements

The soil forward displacement was maximized with the rippled disc and was minimized with the notched disc (Fig. 2a). The plain disc resulted in a medium soil forward displacement of 264 mm. During the operation of the notched disc, some soil particles might not be pushed forward, but being passed over by the notches. This could explain the small soil displacements observed for the notched disc. However, statistical analysis did not show any significant differences among the three discs with regard to soil forward displacement. The soil tracers were dislodged 184 mm on average when the discs were used at the shallow depth, which was increased by 73.4% at the deep depth.

Figure 2

Soil displacements of different discs at different working depths in three directions: (a) forward, (b) lateral, and (c) upward; means followed by different lower case letters or upper case letters are significantly different according to Tukey’s test at the significance level of 0.05; error bars are standard deviations.

Full size image

The rippled disc moved the soil tracers the furthest in the lateral direction at 197 mm (Fig. 2b). The notched disc created the minimal soil lateral displacement of 109 mm, which was less than that of the other two discs. The soil lateral displacement was increased by 42.0% as the working depth changed from the shallow to deep depth. The soil lateral displacement was the average displacement of all the tracers in the lateral direction and a positive value denoted the direction pointing toward the concave face of the disc. It was worth noting that soil tracers on the convex side tended to be pushed away in the opposite direction as compared to other tracers as observed in the experiment. This was related to the scrubbing action as described above.

No significant difference was found in the soil vertical displacement among the treatments (Fig. 2c). All the soil vertical displacements were less than 20 mm with an average of 10.6 mm. Similar to the lateral displacement, not all tracers were dislodged in the same direction. However, the majority of them were in an upward direction including the average value. The small upward displacements indicated moderate soil swelling and elevating movements and minimal soil overturning effect of the discs. This was supported by the soil failure pattern study in Nalavade et al.23, which observed that the dominating compressive shear failure pattern of the free-rolling disc discouraged soil inversion actions.

Residue mixing

The rippled disc had the highest residue mixing rate of 23.1%, which was higher than that of the notched disc, being the lowest at 14.7% (Fig. 3). The residue mixing of the plain disc was medium among the three discs. As for the working depth, the shallow depth created a residue mixing of 16.7%, which was lower than that of the deep depth.

Figure 3

Residue mixing of different discs at different working depths; means followed by different lower case letters or upper case letters are significantly different according to Tukey’s test at the significance level of 0.05; error bars are standard deviations.

Full size image

The residue mixing could be used to estimate the amount of residue being incorporated into the soil, given the surface residue before tillage was 7500 kg/ha. Therefore, the rippled disc was the most effective in terms of the residue incorporation at a rate of 2746 kg/ha. The residue incorporation increased by 606 kg/ha as the working depth increased from shallow to deep. Also, deducting the residue mixing from the original residue cover of 63.1% would be the residue cover remaining. None of the treatments resulted in a residue cover less than 30%, which suggested that all treatments would satisfy the requirement of conservation tillage.

Residue cutting

The residue cutting effectiveness of the discs varied from the highest to the lowest as the rippled, notched, and plain with no significant differences were found (Fig. 4). The total residue cutting of the notched disc consisted of one-third of partially cut while no partially cut was observed for the rippled disc. As for the plain disc, roughly a quarter of the total residue cutting was partially cut. The shallow working depth had a numerically higher residue cutting rate than the deep depth: 32.8% versus 22.2%. One in every four residue tracers being cut was partially cut when the discs were operated at the shallow depth. As a comparison, less than one residue was partially cut for every ten residue tracers being cut at the deep depth. The results suggested that the most effective treatment in cutting residues was the rippled disc at the shallow depth. On average, only 27.5% of the residue tracers were being cut, either partially or completely, by the discs. Partial cuts tended to be pushed into the soil and damaged by the discs. The majority of the remaining residue was pushed aside by the discs through disturbed soil.

Figure 4

Residue cutting including completely cut and partially cut of different discs at different working depths; means followed by different lower case letters or upper case letters are significantly different according to Tukey’s test at the significance level of 0.05; error bars are standard deviations.

Full size image

The effects of disc type and working depth on the residue cutting efficiency of the discs differed from the previous studies of disc openers. For example, the plain disc was found to have a much higher residue cutting efficiency than the notched and serrated discs and the efficiency increased as the working depth increased17. The primary cause of the difference was due to the difference in residue cutting mechanism between the angled tillage discs and relatively straight disc openers. The concaved discs disturbed a fair amount of soil ahead of the disc and relied on the edge to “hook” lying residues in order to cut them. Therefore, the rippled and notched discs had numerically higher residue cutting rates than the plain disc thanks to their hooking edges. The shallower the working depth, the less the soil disturbance and the higher the residue cutting efficiency is. On the other hand, a straight disc opener would ride over all possible residues on the path and penetrate the soil without causing significant disturbance to the seedbed. The difference in residue cutting effectiveness can also be accounted for in part by the difference in residue characteristics such as type, percent cover, and moisture content. For instance, wet rice residue with a moisture content of 41.4% at 2000 kg/ha15 versus dry corn stalk with a moisture content of 4.5% at 7500 kg/ha in this study. Previous studies have shown that the cutting performance of the disc openers was significantly affected by the mechanical properties of the residue26 and residue density17.

The numerically higher portion of surface residue being cut at the shallow depth was attributed to a smaller cutting angle. This cutting angle was the angle of absolute velocity vector acting on the residue with the vertical axis in Kushwaha et al.16, whose analytical model showed that the angle of absolute velocity vector for a disc is smaller at a shallower depth. The disc tended to cut or bend the residues at a smaller cutting angle, while the disc tended to push the residue ahead at a larger cutting angle. The notched disc had the numerically highest portion of partially cut among the three discs, which agreed with the results in Bianchini and Magalhaes21. Kushwaha et al.17 also observed that residue pieces were held into the notches and serrations of the discs instead of being cut, being thrown backward as the disc exited from the soil.


Source: Ecology - nature.com

Mercury methylation by metabolically versatile and cosmopolitan marine bacteria

3 Questions: Ernest Moniz on the future of climate and energy under the Biden-Harris administration