in

Competition alters species’ plastic and genetic response to environmental change

  • 1.

    Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A (Cambridge University Press, 2014).

    Google Scholar 

  • 3.

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).

    CAS 

    Google Scholar 

  • 4.

    Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: Causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).

    Google Scholar 

  • 5.

    Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).

    Google Scholar 

  • 6.

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES (2019).

  • 8.

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 10.

    DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).

    Google Scholar 

  • 13.

    Salamin, N., Wüest, R. O., Lavergne, S., Thuiller, W. & Pearman, P. B. Assessing rapid evolution in a changing environment. Trends Ecol. Evol. 25, 692–698 (2010).

    PubMed 

    Google Scholar 

  • 14.

    Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).

    Google Scholar 

  • 15.

    Govaert, L., Pantel, J. H. & De Meester, L. Eco-evolutionary partitioning metrics: Assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).

    PubMed 

    Google Scholar 

  • 16.

    Diamond, S. E. & Martin, R. A. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Research 5, 1–10 (2016).

    Google Scholar 

  • 17.

    Barraclough, T. G. How do species interactions affect evolutionary dynamics across whole communities?. Annu. Rev. Ecol. Evol. Syst. 46, 25–48 (2015).

    Google Scholar 

  • 18.

    De Meester, L. et al. Analysing eco-evolutionary dynamics—The challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).

    Google Scholar 

  • 19.

    Kleynhans, E. J., Otto, S. P., Reich, P. B. & Vellend, M. Adaptation to elevated CO2 in different biodiversity contexts. Nat. Commun. 7, 20 (2016).

    Google Scholar 

  • 20.

    Walther, G. R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).

    Google Scholar 

  • 21.

    Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evolution (N.Y.) 71, 1205–1221 (2017).

    CAS 

    Google Scholar 

  • 22.

    Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, 20 (2012).

    Google Scholar 

  • 23.

    terHorst, C. P., Lennon, J. T. & Lau, J. A. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc. R. Soc. B Biol. Sci. 281, 20 (2014).

    Google Scholar 

  • 24.

    Lau, J. A., Shaw, R. G., Reich, P. B. & Tiffin, P. Indirect effects drive evolutionary responses to global change. New Phytol. 201, 335–343 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl. Acad. Sci. 116, 2112–2117 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. Proc. Natl. Acad. Sci. 118, e22015772118 (2021).

    Google Scholar 

  • 28.

    McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).

    ADS 
    CAS 

    Google Scholar 

  • 29.

    Altermatt, F. et al. Big answers from small worlds: A user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).

    Google Scholar 

  • 30.

    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Stoecker, D. & Pierson, J. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res. 41, 367–373 (2019).

    Google Scholar 

  • 32.

    Berninger, U.-G., Finlay, B. J. & Kuuppo-Leinikki, P. Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 36, 139–147 (1991).

    ADS 

    Google Scholar 

  • 33.

    Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).

    Google Scholar 

  • 34.

    Herbert, E. R. et al. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, 1–43 (2015).

    Google Scholar 

  • 35.

    Neubauer, S. C. & Craft, C. B. Global change and tidal freshwater wetlands: Scenarios and impacts. Tidal Freshw. Wetl. 20, 20 (2009).

    Google Scholar 

  • 36.

    Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20 (2013).

    Google Scholar 

  • 37.

    terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).

    Google Scholar 

  • 38.

    Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).

    Google Scholar 

  • 39.

    Vanvelk, H., Govaert, L., van den Berg, E. M., Brans, K. I. & De Meester, L. Interspecific differences, plastic, and evolutionary responses to a heat wave in three co-occurring Daphnia species. Limnol. Oceanogr. 20, 1–20. https://doi.org/10.1002/lno.11675 (2020).

    Article 

    Google Scholar 

  • 40.

    Svensson, F., Norberg, J. & Snoeijs, P. Diatom cell size, Coloniality and motility: Trade-Offs between temperature, Salinity and nutrient supply with climate change. PLoS One 9, 25 (2014).

    Google Scholar 

  • 41.

    Karp-Boss, L. & Boss, E. The elongated, the squat and the spherical: Selective pressures for phytoplankton shape. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective (eds Glibert, P. & Kana, T.) 25–34 (Springer, 2016).

    Google Scholar 

  • 42.

    Finley, H. E. Toleration of fresh water Protozoa to increased salinity. Ecology 11, 337–347 (1930).

    Google Scholar 

  • 43.

    Chen, H. & Jiang, J. G. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 219, 251–258 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Shetty, P., Gitau, M. M. & Maróti, G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8, 1–16 (2019).

    Google Scholar 

  • 45.

    terHorst, C. P. Evolution in response to direct and indirect ecological effects in pitcher plant inquiline communities. Am. Nat. 176, 675–685 (2010).

    PubMed 

    Google Scholar 

  • 46.

    Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. Resurrecting complexity: The interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19, 180–190 (2016).

    PubMed 

    Google Scholar 

  • 47.

    Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).

    PubMed 

    Google Scholar 

  • 48.

    Henn, J. J. et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9, 1–11 (2018).

    ADS 

    Google Scholar 

  • 49.

    Johansson, J. Evolutionary responses to environmental changes:How does competition affect adaptation?. Evolution (N. Y.) 62, 421–435 (2008).

    Google Scholar 

  • 50.

    Li, S. J. et al. Microbial communities evolve faster in extreme environments. Sci. Rep. 4, 1–9 (2014).

    Google Scholar 

  • 51.

    Terhorst, C. P. Experimental evolution of protozoan traits in response to interspecific competition. J. Evol. Biol. 24, 36–46 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Inferring species interactions in ecological communities: A comparison of methods at different levels of complexity. Methods Ecol. Evol. 6, 895–906 (2015).

    Google Scholar 

  • 53.

    Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. 227, 1060–1072 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).

    Google Scholar 

  • 55.

    Klironomos, J. H. et al. Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433, 621–624 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Google Scholar 

  • 57.

    Finlay, B. J., Esteban, G. F., Olmo, J. L. & Tyler, P. A. Global distribution of free-living microbial species. Ecography (Cop.) 22, 138–144 (1999).

    Google Scholar 

  • 58.

    Fox, J. W. & McGrady-Steed, J. Stability and complexity in model ecosystems. J. Anim. Ecol. 71, 749–756 (2002).

    Google Scholar 

  • 59.

    Haddad, N. M. et al. Species’ traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11, 348–356 (2008).

    PubMed 

    Google Scholar 

  • 60.

    Fronhofer, E. A. & Altermatt, F. Eco-evolutionary feedbacks during experimental range expansions. Nat. Commun. 6, 1–9 (2015).

    Google Scholar 

  • 61.

    Sonneborn, T. M. Chapter 12 methods in paramecium research. Methods Cell Biol. 4, 241–339 (1970).

    Google Scholar 

  • 62.

    Berger, H. & Foissner, W. Illustrated guide and ecological notes to ciliate species (Protozoa, Ciliophora) in running waters, lakes, and sewage plants. Handb. Angew. Limnol. Grundlagen-Gewässerbelastung-Restaurierung-Aquatische ökotoxikologie-Bewertung-Gewässerschutz 20, 1–60 (2014).

    Google Scholar 

  • 63.

    Cassidy-Hanley, D. M. Tetrahymena in the laboratory: Strain resources, methods for culture, maintenance, and storage. Methods Cell Biol. 109, 237–276 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Sonzogni, W. C., Richardson, W., Rodgers, P. & Monteith, T. J. Chloride pollution of the Great Lakes. Water Pollut. Control Fed. 55, 513–521 (1983).

    CAS 

    Google Scholar 

  • 65.

    Lind, L. et al. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere 9, 25 (2018).

    ADS 

    Google Scholar 

  • 66.

    Falconer, D. S. Introduction to Quantitative Genetics (Longman Group Ltd, 1981).

    Google Scholar 

  • 67.

    Pennekamp, F., Schtickzelle, N. & Petchey, O. L. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecol. Evol. 5, 2584–2595 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Pennekamp, F. et al. Dynamic species classification of microorganisms across time, abiotic and biotic environments—a sliding window approach. PLoS One 12, e0176682 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-6. Retrieved in July 7. (2014).

  • 70.

    Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

    Google Scholar 

  • 71.

    Barton, K. MuMIn: Multi-Model Inference, Version 1.43.6. 1–75 (2019).

  • 72.

    Fronhofer, E. A., Gut, S. & Altermatt, F. Evolution of density-dependent movement during experimental range expansions. J. Evol. Biol. 30, 2165–2176 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Ellner, S. P., Geber, M. A. & Hairston, N. G. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614 (2011).

    PubMed 

    Google Scholar 

  • 74.

    Govaert, L. Eco-evolutionary partitioning metrics: A practical guide for biologists. Belgian J. Zool. 148, 167–202 (2018).

    Google Scholar 


  • Source: Ecology - nature.com

    Rbec: a tool for analysis of amplicon sequencing data from synthetic microbial communities

    “Vigilant inclusion” central to combating climate change