Walther, G. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
Google Scholar
Intergovernmental Panel on Climate Change (IPCC). Climate Change 2014: Impacts, Adaptation, and Vulnerability Part A (Cambridge University Press, 2014).
Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environ. Sci. Pollut. Res. 10, 126–139 (2003).
Google Scholar
Cañedo-Argüelles, M., Kefford, B. & Schäfer, R. Salt in freshwaters: Causes, effects and prospects—introduction to the theme issue. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).
Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).
Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).
Google Scholar
Díaz, S. et al. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. IPBES (2019).
Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).
Google Scholar
Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).
Google Scholar
DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81 (1998).
Google Scholar
Gienapp, P., Teplitsky, C., Alho, J. S., Mills, J. A. & Merilä, J. Climate change and evolution: Disentangling environmental and genetic responses. Mol. Ecol. 17, 167–178 (2008).
Google Scholar
Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).
Salamin, N., Wüest, R. O., Lavergne, S., Thuiller, W. & Pearman, P. B. Assessing rapid evolution in a changing environment. Trends Ecol. Evol. 25, 692–698 (2010).
Google Scholar
Hairston, N. G., Ellner, S. P., Geber, M. A., Yoshida, T. & Fox, J. A. Rapid evolution and the convergence of ecological and evolutionary time. Ecol. Lett. 8, 1114–1127 (2005).
Govaert, L., Pantel, J. H. & De Meester, L. Eco-evolutionary partitioning metrics: Assessing the importance of ecological and evolutionary contributions to population and community change. Ecol. Lett. 19, 839–853 (2016).
Google Scholar
Diamond, S. E. & Martin, R. A. The interplay between plasticity and evolution in response to human-induced environmental change. F1000Research 5, 1–10 (2016).
Barraclough, T. G. How do species interactions affect evolutionary dynamics across whole communities?. Annu. Rev. Ecol. Evol. Syst. 46, 25–48 (2015).
De Meester, L. et al. Analysing eco-evolutionary dynamics—The challenging complexity of the real world. Funct. Ecol. 33, 43–59 (2019).
Kleynhans, E. J., Otto, S. P., Reich, P. B. & Vellend, M. Adaptation to elevated CO2 in different biodiversity contexts. Nat. Commun. 7, 20 (2016).
Walther, G. R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
Kooyers, N. J., James, B. & Blackman, B. K. Competition drives trait evolution and character displacement between Mimulus species along an environmental gradient. Evolution (N.Y.) 71, 1205–1221 (2017).
Google Scholar
Lawrence, D. et al. Species interactions alter evolutionary responses to a novel environment. PLoS Biol. 10, 20 (2012).
terHorst, C. P., Lennon, J. T. & Lau, J. A. The relative importance of rapid evolution for plant-microbe interactions depends on ecological context. Proc. R. Soc. B Biol. Sci. 281, 20 (2014).
Lau, J. A., Shaw, R. G., Reich, P. B. & Tiffin, P. Indirect effects drive evolutionary responses to global change. New Phytol. 201, 335–343 (2014).
Google Scholar
Yoshida, T., Jones, L. E., Ellner, S. P., Fussmann, G. F. & Hairston, N. G. Rapid evolution drives ecological dynamics in a predator–prey system. Nature 424, 303–306 (2003).
Google Scholar
Hart, S. P., Turcotte, M. M. & Levine, J. M. Effects of rapid evolution on species coexistence. Proc. Natl. Acad. Sci. 116, 2112–2117 (2019).
Google Scholar
Grainger, T. N., Rudman, S. M., Schmidt, P. & Levine, J. M. Competitive history shapes rapid evolution in a seasonal climate. Proc. Natl. Acad. Sci. 118, e22015772118 (2021).
McGrady-Steed, J., Harris, P. M. & Morin, P. J. Biodiversity regulates ecosystem predictability. Nature 390, 162–165 (1997).
Google Scholar
Altermatt, F. et al. Big answers from small worlds: A user’s guide for protist microcosms as a model system in ecology and evolution. Methods Ecol. Evol. 6, 218–231 (2015).
Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA 115, 6506–6511 (2018).
Google Scholar
Stoecker, D. & Pierson, J. Predation on protozoa: Its importance to zooplankton revisited. J. Plankton Res. 41, 367–373 (2019).
Berninger, U.-G., Finlay, B. J. & Kuuppo-Leinikki, P. Protozoan control of bacterial abundances in freshwater. Limnol. Oceanogr. 36, 139–147 (1991).
Google Scholar
Williams, W. D. Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337 (2001).
Herbert, E. R. et al. A global perspective on wetland salinization: Ecological consequences of a growing threat to freshwater wetlands. Ecosphere 6, 1–43 (2015).
Neubauer, S. C. & Craft, C. B. Global change and tidal freshwater wetlands: Scenarios and impacts. Tidal Freshw. Wetl. 20, 20 (2009).
Osmond, M. M. & de Mazancourt, C. How competition affects evolutionary rescue. Philos. Trans. R. Soc. B Biol. Sci. 368, 20 (2013).
terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).
Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20 (2019).
Vanvelk, H., Govaert, L., van den Berg, E. M., Brans, K. I. & De Meester, L. Interspecific differences, plastic, and evolutionary responses to a heat wave in three co-occurring Daphnia species. Limnol. Oceanogr. 20, 1–20. https://doi.org/10.1002/lno.11675 (2020).
Google Scholar
Svensson, F., Norberg, J. & Snoeijs, P. Diatom cell size, Coloniality and motility: Trade-Offs between temperature, Salinity and nutrient supply with climate change. PLoS One 9, 25 (2014).
Karp-Boss, L. & Boss, E. The elongated, the squat and the spherical: Selective pressures for phytoplankton shape. In Aquatic Microbial Ecology and Biogeochemistry: A Dual Perspective (eds Glibert, P. & Kana, T.) 25–34 (Springer, 2016).
Finley, H. E. Toleration of fresh water Protozoa to increased salinity. Ecology 11, 337–347 (1930).
Chen, H. & Jiang, J. G. Osmotic responses of Dunaliella to the changes of salinity. J. Cell. Physiol. 219, 251–258 (2009).
Google Scholar
Shetty, P., Gitau, M. M. & Maróti, G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells 8, 1–16 (2019).
terHorst, C. P. Evolution in response to direct and indirect ecological effects in pitcher plant inquiline communities. Am. Nat. 176, 675–685 (2010).
Google Scholar
Stoks, R., Govaert, L., Pauwels, K., Jansen, B. & De Meester, L. Resurrecting complexity: The interplay of plasticity and rapid evolution in the multiple trait response to strong changes in predation pressure in the water flea Daphnia magna. Ecol. Lett. 19, 180–190 (2016).
Google Scholar
Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).
Google Scholar
Henn, J. J. et al. Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9, 1–11 (2018).
Google Scholar
Johansson, J. Evolutionary responses to environmental changes:How does competition affect adaptation?. Evolution (N. Y.) 62, 421–435 (2008).
Li, S. J. et al. Microbial communities evolve faster in extreme environments. Sci. Rep. 4, 1–9 (2014).
Terhorst, C. P. Experimental evolution of protozoan traits in response to interspecific competition. J. Evol. Biol. 24, 36–46 (2011).
Google Scholar
Carrara, F., Giometto, A., Seymour, M., Rinaldo, A. & Altermatt, F. Inferring species interactions in ecological communities: A comparison of methods at different levels of complexity. Methods Ecol. Evol. 6, 895–906 (2015).
Lorts, C. M. & Lasky, J. R. Competition × drought interactions change phenotypic plasticity and the direction of selection on Arabidopsis traits. New Phytol. 227, 1060–1072 (2020).
Google Scholar
Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).
Klironomos, J. H. et al. Abrupt rise in atmospheric CO2 overestimates community response in a model plant-soil system. Nature 433, 621–624 (2005).
Google Scholar
Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
Finlay, B. J., Esteban, G. F., Olmo, J. L. & Tyler, P. A. Global distribution of free-living microbial species. Ecography (Cop.) 22, 138–144 (1999).
Fox, J. W. & McGrady-Steed, J. Stability and complexity in model ecosystems. J. Anim. Ecol. 71, 749–756 (2002).
Haddad, N. M. et al. Species’ traits predict the effects of disturbance and productivity on diversity. Ecol. Lett. 11, 348–356 (2008).
Google Scholar
Fronhofer, E. A. & Altermatt, F. Eco-evolutionary feedbacks during experimental range expansions. Nat. Commun. 6, 1–9 (2015).
Sonneborn, T. M. Chapter 12 methods in paramecium research. Methods Cell Biol. 4, 241–339 (1970).
Berger, H. & Foissner, W. Illustrated guide and ecological notes to ciliate species (Protozoa, Ciliophora) in running waters, lakes, and sewage plants. Handb. Angew. Limnol. Grundlagen-Gewässerbelastung-Restaurierung-Aquatische ökotoxikologie-Bewertung-Gewässerschutz 20, 1–60 (2014).
Cassidy-Hanley, D. M. Tetrahymena in the laboratory: Strain resources, methods for culture, maintenance, and storage. Methods Cell Biol. 109, 237–276 (2012).
Google Scholar
Sonzogni, W. C., Richardson, W., Rodgers, P. & Monteith, T. J. Chloride pollution of the Great Lakes. Water Pollut. Control Fed. 55, 513–521 (1983).
Google Scholar
Lind, L. et al. Salty fertile lakes: How salinization and eutrophication alter the structure of freshwater communities. Ecosphere 9, 25 (2018).
Google Scholar
Falconer, D. S. Introduction to Quantitative Genetics (Longman Group Ltd, 1981).
Pennekamp, F., Schtickzelle, N. & Petchey, O. L. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecol. Evol. 5, 2584–2595 (2015).
Google Scholar
Pennekamp, F. et al. Dynamic species classification of microorganisms across time, abiotic and biotic environments—a sliding window approach. PLoS One 12, e0176682 (2017).
Google Scholar
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. lmerTest: Tests for random and fixed effects for linear mixed effect models (lmer objects of lme4 package). R package version 2.0-6. Retrieved in July 7. (2014).
Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Barton, K. MuMIn: Multi-Model Inference, Version 1.43.6. 1–75 (2019).
Fronhofer, E. A., Gut, S. & Altermatt, F. Evolution of density-dependent movement during experimental range expansions. J. Evol. Biol. 30, 2165–2176 (2017).
Google Scholar
Ellner, S. P., Geber, M. A. & Hairston, N. G. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics. Ecol. Lett. 14, 603–614 (2011).
Google Scholar
Govaert, L. Eco-evolutionary partitioning metrics: A practical guide for biologists. Belgian J. Zool. 148, 167–202 (2018).
Source: Ecology - nature.com