in

Competitive interactions as a mechanism for chemical diversity maintenance in Nodularia spumigena

  • 1.

    Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).

    Article 
    ADS 

    Google Scholar 

  • 2.

    McGregor, G. B. et al. First report of a toxic Nodularia spumigena (nostocales/cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int. J. Env. Res. Public Health 9, 2396–2411 (2012).

    Article 

    Google Scholar 

  • 3.

    Popin, R. V. et al. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins 12, 141 (2020).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Seaman, M., Ashton, P. & Williams, W. Inland salt waters of southern Africa. Hydrobiologia 210, 75–91 (1991).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Beutel, M. W., Horne, A. J., Roth, J. C. & Barratt, N. J. Saline Lakes 91–105 (Springer, 2001).

    Book 

    Google Scholar 

  • 6.

    Paerl, H. W. & Paul, V. J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Karjalainen, M. et al. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. AMBIO J. Human Environ. 36, 195–202 (2007).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Sotton, B., Domaizon, I., Anneville, O., Cattanéo, F. & Guillard, J. Nodularin and cylindrospermopsin: A review of their effects on fish. Rev. Fish Biol. Fish. 25, 1–19 (2015).

    Article 

    Google Scholar 

  • 9.

    Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A. & Legrand, C. Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Mar. Drugs 14, 209. https://doi.org/10.3390/md14110209 (2016).

    CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 

  • 10.

    Voss, B. et al. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8, e60224–e60224. https://doi.org/10.1371/journal.pone.0060224 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 11.

    Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00791 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Welker, M. & von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 30, 530–563 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 13.

    Kehr, J. C., Picchi, D. G. & Dittmann, E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J. Org. Chem. 7, 1622–1635. https://doi.org/10.3762/bjoc.7.191 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Christiansen, G., Philmus, B., Hemscheidt, T. & Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol. 193, 3822–3831 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    Ishida, K. et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 14, 565–576 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Fewer, D.P. et al. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73, 924–937. https://doi.org/10.1111/j.1365-2958.2009.06816.x (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Portmann, C. et al. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 71, 1891–1896 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Ersmark, K., Del Valle, J. R. & Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 47, 1202–1223 (2008).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Liu, L. et al. Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem. Biol. 10, 725–733 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Itou, Y., Suzuki, S., Ishida, K. & Murakami, M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg. Med. Chem. Lett. 9, 1243–1246 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Bister, B. et al. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 67, 1755–1757 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C. & Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15, 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Halstvedt, C. B., Rohrlack, T., Ptacnik, R. & Edvardsen, B. On the effect of abiotic environmental factors on production of bioactive oligopeptides in field populations of Planktothrix spp. (Cyanobacteria). J. Plankton Res. 30, 607–617 (2008).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Mazur-Marzec, H. et al. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar. Drugs 11, 1–19. https://doi.org/10.3390/md11010001 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Repka, S., Koivula, M., Harjunpa, V., Rouhiainen, L. & Sivonen, K. Effects of phosphate and light on growth of and bioactive peptide production by the Cyanobacterium anabaena strain 90 and its anabaenopeptilide mutant. Appl. Environ. Microbiol. 70, 4551–4560. https://doi.org/10.1128/aem.70.8.4551-4560.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647–1656 (1997).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    OECD. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/9789264069923-en (OECD
    Publishing, Paris, 2011).

  • 28.

    Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M. & Klenk, H.-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7, e34846. https://doi.org/10.1371/journal.pone.0034846 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 29.

    Higo, S., Yamatogi, T., Ishida, N., Hirae, S. & Koike, K. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61, 63–70 (2017).

    Article 

    Google Scholar 

  • 30.

    Qi, H., Wang, J. & Wang, Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J. Sea Res. 80, 1–11 (2013).

    Article 
    ADS 

    Google Scholar 

  • 31.

    Briand, E., Bormans, M., Gugger, M., Dorrestein, P. C. & Gerwick, W. H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 18, 384–400. https://doi.org/10.1111/1462-2920.12904 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Koek, M. M., Muilwijk, B., van der Werf, M. J. & Hankemeier, T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem. 78, 1272–1281 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 34.

    Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245-257.e247. https://doi.org/10.1016/j.cels.2018.08.003 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Paul, C., Mausz, M. A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359. https://doi.org/10.1007/s11306-012-0453-1 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Jensen, A., Rystad, B. & Skoglund, L. The use of dialysis culture in phytoplankton studies. J. Exp. Mar. Biol. Ecol. 8, 241–248 (1972).

    Article 

    Google Scholar 

  • 38.

    Kobayashi, K., Takata, Y. & Kodama, M. Direct contact between Pseudo-nitzschiaámultiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fish. Sci. 75, 771–776 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    McVeigh, I., & Brown, W. In vitro growth of chlamydomonas chlamydogama bold and haematococcus pluvialis flotow em. Wille in mixed cultures.
    Bulletin of the Torrey Botanical Club, 81(3), 218–233. https://doi.org/10.2307/2481813 (1954).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Sieg, R. D., Poulson-Ellestad, K. L. & Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 28, 388–399 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Yamasaki, A. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options. J. Chem. Eng. Japan 36, 361–375 (2003).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Hajdu, S., Hoglander, H. & Larsson, U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189–205 (2007).

    Article 

    Google Scholar 

  • 43.

    Berman-Frank, I. & Dubinsky, Z. Balanced growth in aquatic plants: Myth or reality? Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience 49, 29–37 (1999).

    Article 

    Google Scholar 

  • 44.

    Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 525–536. https://doi.org/10.1111/j.1469-8137.2005.01601.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Raven, J. A. & Beardall, J. Chlorophyll fluorescence and ecophysiology: Seeing red?. New Phytol. 169, 449–451. https://doi.org/10.1111/j.1469-8137.2006.01637.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming microcystis-epibiont communities. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00746 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 48.

    Caldwell, D. Associations between photosynthetic and heterotrophic prokaryotes in plankton. in Abstracts of the third International Symposium on Photosynthetic Prokaryotes (ed Nichols, J. M) (University of Liverpool, UK, 1979).

  • 49.

    Park, H. D. et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol. Int. J. 16, 337–343 (2001).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 50.

    Berg, C. et al. Dissection of microbial community functions during a cyanobacterial bloom in the Baltic Sea via metatranscriptomics. Front. Mar. Sci. 5, 55 (2018).

    Article 

    Google Scholar 

  • 51.

    Humbert, J.-F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747. https://doi.org/10.1371/journal.pone.0070747 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 52.

    Toporowska, M., Mazur-Marzec, H. & Pawlik-Skowrońska, B. The effects of cyanobacterial bloom extracts on the biomass, Chl-a, MC and other oligopeptides contents in a natural Planktothrix agardhii population. Int. J. Env. Res. Public Health 17, 2881 (2020).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Grabowska, M., Kobos, J., Toruńska-Sitarz, A. & Mazur-Marzec, H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 196, 697–707 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    Penn, K., Wang, J., Fernando, S. C. & Thompson, J. R. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 8, 1866–1878 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Neilan, B. A. et al. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089–4097 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Long, B. M., Jones, G. J. & Orr, P. T. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67, 278–283 (2001).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Qu, J. et al. Determination of the role of microcystis aeruginosa in toxin generation based on phosphoproteomic profiles. Toxins 10, 304 (2018).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Raven, J. A. Cyanotoxins: A poison that frees phosphate. Curr. Biol. 20, R850–R852 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Utkilen, H. & Gjølme, N. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61, 797–800 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Gan, N. et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol. 14, 730–742 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Pomati, F., Rossetti, C., Manarolla, G., Burns, B. P. & Neilan, B. A. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 150, 455–461 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Seigler, D. & Price, P. W. Secondary compounds in plants: Primary functions. Am. Nat. 110, 101–105 (1976).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6, e17615 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 64.

    Meissner, S., Fastner, J. & Dittmann, E. Microcystin production revisited: Conjugate formation makes a major contribution. Environ. Microbiol. 15, 1810–1820. https://doi.org/10.1111/1462-2920.12072 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 65.

    Orr, P. T., Willis, A. & Burford, M. A. Application of first order rate kinetics to explain changes in bloom toxicity—The importance of understanding cell toxin quotas. J. Oceanol. Limnol. 36, 1063–1074. https://doi.org/10.1007/s00343-019-7188-z (2018).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 66.

    Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 101, 568–573 (2004).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 67.

    Orr, P. T. & Jones, G. J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43, 1604–1614 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 68.

    Burford, M. A. et al. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54, 44–53 (2016).

    PubMed 
    Article 

    Google Scholar 

  • 69.

    Pierangelini, M. et al. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl. Environ. Microbiol. 81, 3069–3076. https://doi.org/10.1128/aem.03556-14 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Falkowski, P. G., Sukenik, A. & Herzig, R. Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. J. Phycol. 25, 471–478 (1989).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Turpin, D. H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27, 14–20 (1991).

    CAS 
    Article 

    Google Scholar 

  • 72.

    Moffitt, M. C. & Neilan, B. A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70, 6353–6362 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 73.

    Fewer, D. P. et al. New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS ONE 8, e73618 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 74.

    Fujii, K. et al. Comparative study of toxic and non-toxic cyanobacterial products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett. 38, 5525–5528 (1997).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Ishida, K. et al. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 75, 2017–2026 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Suikkanen, S., Fistarol, G. O. & Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flosaquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85–101 (2004).

    Article 

    Google Scholar 

  • 77.

    Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K. & Viitasalo, M. Allelopathy of Baltic Sea cyanobacteria: No evidence for the role of nodularin. J. Plankton Res. 28, 543–550. https://doi.org/10.1093/plankt/fbi139 (2006).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Żak, A. & Kosakowska, A. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coast. Shelf Sci. 167, 113–118 (2015).

    Article 
    ADS 

    Google Scholar 

  • 79.

    Śliwińska-Wilczewska, S., Felpeto, A. B., Możdżeń, K., Vasconcelos, V. & Latała, A. Physiological effects on coexisting microalgae of the allelochemicals produced by the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena. Toxins 11, 712 (2019).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 80.

    Gross, E. M. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313–339 (2003).

    Article 

    Google Scholar 

  • 81.

    Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003).

    Article 

    Google Scholar 

  • 82.

    Leao, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282. https://doi.org/10.3109/10408410902823705 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. & Codd, G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Pflugmacher, S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. Int. J. 17, 407–413 (2002).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 85.

    Tilahun S. Exclusive partitioning of intra- and extra-cellular cyanotoxins: limitation of the conventional procedure. Environ. Sci. Pollut. Res. Int. 27(14), 17427–17428. https://doi.org/10.1007/s11356-020-08256-8 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 86.

    Park, H. D. et al. Temporal variabilities of the concentrations of intra-and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. Int. J. 13, 61–72 (1998).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 87.

    Tsuji, K. et al. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol. 28, 173–177 (1994).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 88.

    Schatz, D. et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 9, 965–970 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 89.

    Makower, A. K. et al. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81, 544–554 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 90.

    Kaplan, A. et al. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 3, 138 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Svercel, M. Negative allelopathy among cyanobacteria. in Cyanobacteria: Ecology, Toxicology and Management. (ed Ferrao-Filho, A. S.) 27–46 (Nova Science Publishers, New York, NY, USA, 2013).

    Google Scholar 

  • 92.

    Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218. https://doi.org/10.1016/j.taap.2004.11.002 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 93.

    Agrawal, M. & Agrawal, M. K. Cyanobacteria–herbivore interaction in freshwater ecosystem. J. Microbiol. Biotechnol. Res. 1, 52–66 (2011).

    Google Scholar 

  • 94.

    Sadler, T. & von Elert, E. Dietary exposure of Daphnia to microcystins: No in vivo relevance of biotransformation. Aquat. Toxicol. 150, 73–82. https://doi.org/10.1016/j.aquatox.2014.02.017 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 95.

    Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 79, 2642–2647 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Sivonen, K. et al. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microbiol. 55, 1990–1995 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 97.

    Burbage, C. D. & Binder, B. J. Relationship between cell cycle and light-limited growth rate in oceanic Prochlorococcus (MIT9312) and Synechococcus (WH8103) (Cyanobacteria). J. Phycol. 43, 266–274. https://doi.org/10.1111/j.1529-8817.2007.00315.x (2007).

    Article 

    Google Scholar 

  • 98.

    Lei, L., Dai, J., Lin, Q., Peng, L. Competitive dominance of Microcystis aeruginosa against Raphidiopsis raciborskii is strain-and temperature dependent. Knowl. Manag. Aquat. Ecosyst. 421, 36. https://doi.org/10.1051/kmae/2020023 (2020).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    To advance climate action, MIT seeks partnerships beyond industry

    Top collegiate inventors awarded 2021 Lemelson-MIT Student Prize