Stal, L. J. et al. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—Responses to a changing environment. Cont. Shelf Res. 23, 1695–1714 (2003).
Google Scholar
McGregor, G. B. et al. First report of a toxic Nodularia spumigena (nostocales/cyanobacteria) bloom in sub-tropical Australia. I. Phycological and public health investigations. Int. J. Env. Res. Public Health 9, 2396–2411 (2012).
Google Scholar
Popin, R. V. et al. Genomic and metabolomic analyses of natural products in Nodularia spumigena isolated from a shrimp culture pond. Toxins 12, 141 (2020).
Google Scholar
Seaman, M., Ashton, P. & Williams, W. Inland salt waters of southern Africa. Hydrobiologia 210, 75–91 (1991).
Google Scholar
Beutel, M. W., Horne, A. J., Roth, J. C. & Barratt, N. J. Saline Lakes 91–105 (Springer, 2001).
Google Scholar
Paerl, H. W. & Paul, V. J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 46, 1349–1363 (2012).
Google Scholar
Karjalainen, M. et al. Ecosystem consequences of cyanobacteria in the northern Baltic Sea. AMBIO J. Human Environ. 36, 195–202 (2007).
Google Scholar
Sotton, B., Domaizon, I., Anneville, O., Cattanéo, F. & Guillard, J. Nodularin and cylindrospermopsin: A review of their effects on fish. Rev. Fish Biol. Fish. 25, 1–19 (2015).
Google Scholar
Mazur-Marzec, H., Bertos-Fortis, M., Toruńska-Sitarz, A., Fidor, A. & Legrand, C. Chemical and genetic diversity of Nodularia spumigena from the Baltic Sea. Mar. Drugs 14, 209. https://doi.org/10.3390/md14110209 (2016).
Google Scholar
Voss, B. et al. Insights into the physiology and ecology of the brackish-water-adapted Cyanobacterium Nodularia spumigena CCY9414 based on a genome-transcriptome analysis. PLoS ONE 8, e60224–e60224. https://doi.org/10.1371/journal.pone.0060224 (2013).
Google Scholar
Le Manach, S. et al. Global metabolomic characterizations of Microcystis spp. highlights clonal diversity in natural bloom-forming populations and expands metabolite structural diversity. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00791 (2019).
Google Scholar
Welker, M. & von Döhren, H. Cyanobacterial peptides—Nature’s own combinatorial biosynthesis. FEMS Microbiol. Rev. 30, 530–563 (2006).
Google Scholar
Kehr, J. C., Picchi, D. G. & Dittmann, E. Natural product biosyntheses in cyanobacteria: A treasure trove of unique enzymes. Beilstein J. Org. Chem. 7, 1622–1635. https://doi.org/10.3762/bjoc.7.191 (2011).
Google Scholar
Christiansen, G., Philmus, B., Hemscheidt, T. & Kurmayer, R. Genetic variation of adenylation domains of the anabaenopeptin synthesis operon and evolution of substrate promiscuity. J. Bacteriol. 193, 3822–3831 (2011).
Google Scholar
Ishida, K. et al. Biosynthesis and structure of aeruginoside 126A and 126B, cyanobacterial peptide glycosides bearing a 2-carboxy-6-hydroxyoctahydroindole moiety. Chem. Biol. 14, 565–576 (2007).
Google Scholar
Fewer, D.P. et al. The non-ribosomal assembly and frequent occurrence of the protease inhibitors spumigins in the bloom-forming cyanobacterium Nodularia spumigena. Mol. Microbiol. 73, 924–937. https://doi.org/10.1111/j.1365-2958.2009.06816.x (2009).
Google Scholar
Portmann, C. et al. Isolation of aerucyclamides C and D and structure revision of microcyclamide 7806A: Heterocyclic ribosomal peptides from Microcystis aeruginosa PCC 7806 and their antiparasite evaluation. J. Nat. Prod. 71, 1891–1896 (2008).
Google Scholar
Ersmark, K., Del Valle, J. R. & Hanessian, S. Chemistry and biology of the aeruginosin family of serine protease inhibitors. Angew. Chem. Int. Ed. 47, 1202–1223 (2008).
Google Scholar
Liu, L. et al. Pseudoaeruginosins, nonribosomal peptides in Nodularia spumigena. ACS Chem. Biol. 10, 725–733 (2015).
Google Scholar
Itou, Y., Suzuki, S., Ishida, K. & Murakami, M. Anabaenopeptins G and H, potent carboxypeptidase A inhibitors from the cyanobacterium Oscillatoria agardhii (NIES-595). Bioorg. Med. Chem. Lett. 9, 1243–1246 (1999).
Google Scholar
Bister, B. et al. Cyanopeptolin 963A, a chymotrypsin inhibitor of Microcystis PCC 7806. J. Nat. Prod. 67, 1755–1757 (2004).
Google Scholar
Neilan, B. A., Pearson, L. A., Muenchhoff, J., Moffitt, M. C. & Dittmann, E. Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ. Microbiol. 15, 1239–1253. https://doi.org/10.1111/j.1462-2920.2012.02729.x (2013).
Google Scholar
Halstvedt, C. B., Rohrlack, T., Ptacnik, R. & Edvardsen, B. On the effect of abiotic environmental factors on production of bioactive oligopeptides in field populations of Planktothrix spp. (Cyanobacteria). J. Plankton Res. 30, 607–617 (2008).
Google Scholar
Mazur-Marzec, H. et al. Diversity of peptides produced by Nodularia spumigena from various geographical regions. Mar. Drugs 11, 1–19. https://doi.org/10.3390/md11010001 (2012).
Google Scholar
Repka, S., Koivula, M., Harjunpa, V., Rouhiainen, L. & Sivonen, K. Effects of phosphate and light on growth of and bioactive peptide production by the Cyanobacterium anabaena strain 90 and its anabaenopeptilide mutant. Appl. Environ. Microbiol. 70, 4551–4560. https://doi.org/10.1128/aem.70.8.4551-4560.2004 (2004).
Google Scholar
Lehtimäki, J., Moisander, P., Sivonen, K. & Kononen, K. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647–1656 (1997).
Google Scholar
OECD. Test No. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD Guidelines for the Testing of Chemicals, Section 2. https://doi.org/10.1787/9789264069923-en (OECD
Publishing, Paris, 2011).
Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M. & Klenk, H.-P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7, e34846. https://doi.org/10.1371/journal.pone.0034846 (2012).
Google Scholar
Higo, S., Yamatogi, T., Ishida, N., Hirae, S. & Koike, K. Application of a pulse-amplitude-modulation (PAM) fluorometer reveals its usefulness and robustness in the prediction of Karenia mikimotoi blooms: A case study in Sasebo Bay, Nagasaki, Japan. Harmful Algae 61, 63–70 (2017).
Google Scholar
Qi, H., Wang, J. & Wang, Z. A comparative study of maximal quantum yield of photosystem II to determine nitrogen and phosphorus limitation on two marine algae. J. Sea Res. 80, 1–11 (2013).
Google Scholar
Briand, E., Bormans, M., Gugger, M., Dorrestein, P. C. & Gerwick, W. H. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions. Environ. Microbiol. 18, 384–400. https://doi.org/10.1111/1462-2920.12904 (2016).
Google Scholar
Koek, M. M., Muilwijk, B., van der Werf, M. J. & Hankemeier, T. Microbial metabolomics with gas chromatography/mass spectrometry. Anal. Chem. 78, 1272–1281 (2006).
Google Scholar
R Development Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, Austria, 2020).
Medlock, G. L. et al. Inferring metabolic mechanisms of interaction within a defined gut microbiota. Cell Syst. 7, 245-257.e247. https://doi.org/10.1016/j.cels.2018.08.003 (2018).
Google Scholar
Paul, C., Mausz, M. A. & Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 9, 349–359. https://doi.org/10.1007/s11306-012-0453-1 (2013).
Google Scholar
Schatz, D. et al. Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ. Microbiol. 7, 798–805 (2005).
Google Scholar
Jensen, A., Rystad, B. & Skoglund, L. The use of dialysis culture in phytoplankton studies. J. Exp. Mar. Biol. Ecol. 8, 241–248 (1972).
Google Scholar
Kobayashi, K., Takata, Y. & Kodama, M. Direct contact between Pseudo-nitzschiaámultiseries and bacteria is necessary for the diatom to produce a high level of domoic acid. Fish. Sci. 75, 771–776 (2009).
Google Scholar
McVeigh, I., & Brown, W. In vitro growth of chlamydomonas chlamydogama bold and haematococcus pluvialis flotow em. Wille in mixed cultures.
Bulletin of the Torrey Botanical Club, 81(3), 218–233. https://doi.org/10.2307/2481813 (1954).
Google Scholar
Sieg, R. D., Poulson-Ellestad, K. L. & Kubanek, J. Chemical ecology of the marine plankton. Nat. Prod. Rep. 28, 388–399 (2011).
Google Scholar
Yamasaki, A. An overview of CO2 mitigation options for global warming—Emphasizing CO2 sequestration options. J. Chem. Eng. Japan 36, 361–375 (2003).
Google Scholar
Hajdu, S., Hoglander, H. & Larsson, U. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harmful Algae 6, 189–205 (2007).
Google Scholar
Berman-Frank, I. & Dubinsky, Z. Balanced growth in aquatic plants: Myth or reality? Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage. Bioscience 49, 29–37 (1999).
Google Scholar
Kruskopf, M. & Flynn, K. J. Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. New Phytol. 169, 525–536. https://doi.org/10.1111/j.1469-8137.2005.01601.x (2006).
Google Scholar
Raven, J. A. & Beardall, J. Chlorophyll fluorescence and ecophysiology: Seeing red?. New Phytol. 169, 449–451. https://doi.org/10.1111/j.1469-8137.2006.01637.x (2006).
Google Scholar
Li, Q. et al. A large-scale comparative metagenomic study reveals the functional interactions in six bloom-forming microcystis-epibiont communities. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.00746 (2018).
Google Scholar
Harke, M. J. et al. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium Microcystis spp. Harmful Algae 54, 4–20 (2016).
Google Scholar
Caldwell, D. Associations between photosynthetic and heterotrophic prokaryotes in plankton. in Abstracts of the third International Symposium on Photosynthetic Prokaryotes (ed Nichols, J. M) (University of Liverpool, UK, 1979).
Park, H. D. et al. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ. Toxicol. Int. J. 16, 337–343 (2001).
Google Scholar
Berg, C. et al. Dissection of microbial community functions during a cyanobacterial bloom in the Baltic Sea via metatranscriptomics. Front. Mar. Sci. 5, 55 (2018).
Google Scholar
Humbert, J.-F. et al. A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS ONE 8, e70747. https://doi.org/10.1371/journal.pone.0070747 (2013).
Google Scholar
Toporowska, M., Mazur-Marzec, H. & Pawlik-Skowrońska, B. The effects of cyanobacterial bloom extracts on the biomass, Chl-a, MC and other oligopeptides contents in a natural Planktothrix agardhii population. Int. J. Env. Res. Public Health 17, 2881 (2020).
Google Scholar
Grabowska, M., Kobos, J., Toruńska-Sitarz, A. & Mazur-Marzec, H. Non-ribosomal peptides produced by Planktothrix agardhii from Siemianówka Dam Reservoir SDR (northeast Poland). Arch. Microbiol. 196, 697–707 (2014).
Google Scholar
Penn, K., Wang, J., Fernando, S. C. & Thompson, J. R. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 8, 1866–1878 (2014).
Google Scholar
Neilan, B. A. et al. Nonribosomal peptide synthesis and toxigenicity of cyanobacteria. J. Bacteriol. 181, 4089–4097 (1999).
Google Scholar
Long, B. M., Jones, G. J. & Orr, P. T. Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl. Environ. Microbiol. 67, 278–283 (2001).
Google Scholar
Qu, J. et al. Determination of the role of microcystis aeruginosa in toxin generation based on phosphoproteomic profiles. Toxins 10, 304 (2018).
Google Scholar
Raven, J. A. Cyanotoxins: A poison that frees phosphate. Curr. Biol. 20, R850–R852 (2010).
Google Scholar
Utkilen, H. & Gjølme, N. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61, 797–800 (1995).
Google Scholar
Gan, N. et al. The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ. Microbiol. 14, 730–742 (2012).
Google Scholar
Pomati, F., Rossetti, C., Manarolla, G., Burns, B. P. & Neilan, B. A. Interactions between intracellular Na+ levels and saxitoxin production in Cylindrospermopsis raciborskii T3. Microbiology 150, 455–461 (2004).
Google Scholar
Seigler, D. & Price, P. W. Secondary compounds in plants: Primary functions. Am. Nat. 110, 101–105 (1976).
Google Scholar
Zilliges, Y. et al. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS ONE 6, e17615 (2011).
Google Scholar
Meissner, S., Fastner, J. & Dittmann, E. Microcystin production revisited: Conjugate formation makes a major contribution. Environ. Microbiol. 15, 1810–1820. https://doi.org/10.1111/1462-2920.12072 (2013).
Google Scholar
Orr, P. T., Willis, A. & Burford, M. A. Application of first order rate kinetics to explain changes in bloom toxicity—The importance of understanding cell toxin quotas. J. Oceanol. Limnol. 36, 1063–1074. https://doi.org/10.1007/s00343-019-7188-z (2018).
Google Scholar
Rantala, A. et al. Phylogenetic evidence for the early evolution of microcystin synthesis. Proc. Natl. Acad. Sci. USA 101, 568–573 (2004).
Google Scholar
Orr, P. T. & Jones, G. J. Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43, 1604–1614 (1998).
Google Scholar
Burford, M. A. et al. Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54, 44–53 (2016).
Google Scholar
Pierangelini, M. et al. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions. Appl. Environ. Microbiol. 81, 3069–3076. https://doi.org/10.1128/aem.03556-14 (2015).
Google Scholar
Falkowski, P. G., Sukenik, A. & Herzig, R. Nitrogen limitation in Isochrysis galbana (Haptophyceae). II. Relative abundance of chloroplast proteins. J. Phycol. 25, 471–478 (1989).
Google Scholar
Turpin, D. H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. J. Phycol. 27, 14–20 (1991).
Google Scholar
Moffitt, M. C. & Neilan, B. A. Characterization of the nodularin synthetase gene cluster and proposed theory of the evolution of cyanobacterial hepatotoxins. Appl. Environ. Microbiol. 70, 6353–6362 (2004).
Google Scholar
Fewer, D. P. et al. New structural variants of aeruginosin produced by the toxic bloom forming cyanobacterium Nodularia spumigena. PLoS ONE 8, e73618 (2013).
Google Scholar
Fujii, K. et al. Comparative study of toxic and non-toxic cyanobacterial products: Novel peptides from toxic Nodularia spumigena AV1. Tetrahedron Lett. 38, 5525–5528 (1997).
Google Scholar
Ishida, K. et al. Plasticity and evolution of aeruginosin biosynthesis in cyanobacteria. Appl. Environ. Microbiol. 75, 2017–2026 (2009).
Google Scholar
Suikkanen, S., Fistarol, G. O. & Granéli, E. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flosaquae and Anabaena lemmermannii on algal monocultures. J. Exp. Mar. Biol. Ecol. 308, 85–101 (2004).
Google Scholar
Suikkanen, S., Engström-Öst, J., Jokela, J., Sivonen, K. & Viitasalo, M. Allelopathy of Baltic Sea cyanobacteria: No evidence for the role of nodularin. J. Plankton Res. 28, 543–550. https://doi.org/10.1093/plankt/fbi139 (2006).
Google Scholar
Żak, A. & Kosakowska, A. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris. Estuar. Coast. Shelf Sci. 167, 113–118 (2015).
Google Scholar
Śliwińska-Wilczewska, S., Felpeto, A. B., Możdżeń, K., Vasconcelos, V. & Latała, A. Physiological effects on coexisting microalgae of the allelochemicals produced by the bloom-forming cyanobacteria Synechococcus sp. and Nodularia spumigena. Toxins 11, 712 (2019).
Google Scholar
Gross, E. M. Allelopathy of aquatic autotrophs. Crit. Rev. Plant Sci. 22, 313–339 (2003).
Google Scholar
Legrand, C., Rengefors, K., Fistarol, G. O. & Graneli, E. Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia 42, 406–419 (2003).
Google Scholar
Leao, P. N., Vasconcelos, M. T. & Vasconcelos, V. M. Allelopathy in freshwater cyanobacteria. Crit. Rev. Microbiol. 35, 271–282. https://doi.org/10.3109/10408410902823705 (2009).
Google Scholar
MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. & Codd, G. A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192 (1990).
Google Scholar
Pflugmacher, S. Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ. Toxicol. Int. J. 17, 407–413 (2002).
Google Scholar
Tilahun S. Exclusive partitioning of intra- and extra-cellular cyanotoxins: limitation of the conventional procedure. Environ. Sci. Pollut. Res. Int. 27(14), 17427–17428. https://doi.org/10.1007/s11356-020-08256-8 (2020).
Google Scholar
Park, H. D. et al. Temporal variabilities of the concentrations of intra-and extracellular microcystin and toxic Microcystis species in a hypertrophic lake, Lake Suwa, Japan (1991–1994). Environ. Toxicol. Water Qual. Int. J. 13, 61–72 (1998).
Google Scholar
Tsuji, K. et al. Stability of microcystins from cyanobacteria: Effect of light on decomposition and isomerization. Environ. Sci. Technol. 28, 173–177 (1994).
Google Scholar
Schatz, D. et al. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ. Microbiol. 9, 965–970 (2007).
Google Scholar
Makower, A. K. et al. Transcriptomics-aided dissection of the intracellular and extracellular roles of microcystin in Microcystis aeruginosa PCC 7806. Appl. Environ. Microbiol. 81, 544–554 (2015).
Google Scholar
Kaplan, A. et al. The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front. Microbiol. 3, 138 (2012).
Google Scholar
Svercel, M. Negative allelopathy among cyanobacteria. in Cyanobacteria: Ecology, Toxicology and Management. (ed Ferrao-Filho, A. S.) 27–46 (Nova Science Publishers, New York, NY, USA, 2013).
Wiegand, C. & Pflugmacher, S. Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218. https://doi.org/10.1016/j.taap.2004.11.002 (2005).
Google Scholar
Agrawal, M. & Agrawal, M. K. Cyanobacteria–herbivore interaction in freshwater ecosystem. J. Microbiol. Biotechnol. Res. 1, 52–66 (2011).
Sadler, T. & von Elert, E. Dietary exposure of Daphnia to microcystins: No in vivo relevance of biotransformation. Aquat. Toxicol. 150, 73–82. https://doi.org/10.1016/j.aquatox.2014.02.017 (2014).
Google Scholar
Rohrlack, T., Christiansen, G. & Kurmayer, R. Putative antiparasite defensive system involving ribosomal and nonribosomal oligopeptides in cyanobacteria of the genus Planktothrix. Appl. Environ. Microbiol. 79, 2642–2647 (2013).
Google Scholar
Sivonen, K. et al. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Appl. Environ. Microbiol. 55, 1990–1995 (1989).
Google Scholar
Burbage, C. D. & Binder, B. J. Relationship between cell cycle and light-limited growth rate in oceanic Prochlorococcus (MIT9312) and Synechococcus (WH8103) (Cyanobacteria). J. Phycol. 43, 266–274. https://doi.org/10.1111/j.1529-8817.2007.00315.x (2007).
Google Scholar
Lei, L., Dai, J., Lin, Q., Peng, L. Competitive dominance of Microcystis aeruginosa against Raphidiopsis raciborskii is strain-and temperature dependent. Knowl. Manag. Aquat. Ecosyst. 421, 36. https://doi.org/10.1051/kmae/2020023 (2020).
Google Scholar
Source: Ecology - nature.com