in

Conserving intraspecific variation for nature’s contributions to people

  • 1.

    Díaz, S. et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2019).

  • 2.

    Díaz, S. et al. Assessing nature’s contributions to people. Science 359, 270–272 (2018).

    PubMed  Google Scholar 

  • 3.

    Des Roches, S. et al. The ecological importance of intraspecific variation. Nat. Ecol. Evol. 2, 57–64 (2018).

    PubMed  Google Scholar 

  • 4.

    Hughes, J. B., Daily, G. C. & Ehrlich, P. R. Population diversity: its extent and extinction. Science 278, 689–692 (1997).

    CAS  PubMed  Google Scholar 

  • 5.

    Mimura, M. et al. Understanding and monitoring the consequences of human impacts on intraspecific variation. Evol. Appl. 10, 121–139 (2017).

    PubMed  Google Scholar 

  • 6.

    Leigh, D. M. et al. Estimated six per cent loss of genetic variation in wild populations since the Industrial Revolution. Evol. Appl. 12, 1505–1512 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 7.

    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).

    CAS  PubMed  Google Scholar 

  • 8.

    Laikre, L. et al. Post-2020 goals overlook genetic diversity. Science 367, 1083–1085 (2020).

    PubMed  Google Scholar 

  • 9.

    The Red List of Threatened Species, Version 2019-3 (IUCN, 2019); http://www.iucnredlist.org

  • 10.

    DiBattista, J. D. Patterns of genetic variation in anthropogenically impacted populations. Conserv. Genet. 9, 141–156 (2008).

    Google Scholar 

  • 11.

    Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).

    PubMed  Google Scholar 

  • 12.

    Willoughby, J. R. et al. The reduction of genetic diversity in threatened vertebrates and new recommendations regarding IUCN conservation rankings. Biol. Conserv. 191, 495–503 (2015).

    Google Scholar 

  • 13.

    Living Planet Report (WWF, 2018).

  • 14.

    Laikre, L. & Ryman, N. Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio 25, 505–509 (1996).

    Google Scholar 

  • 15.

    Delaney, K. S., Riley, S. P. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 16.

    Pfenninger, M., Bálint, M. & Pauls, S. U. Methodological framework for projecting the potential loss of intraspecific genetic diversity due to global climate change. BMC Evol. Biol. 12, 224 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 17.

    Rocha‐Olivares, A., Fleeger, J. W. & Foltz, D. W. Differential tolerance among cryptic species: a potential cause of pollutant-related reductions in genetic diversity. Environ. Toxicol. Chem. 23, 2132–2137 (2004).

    PubMed  Google Scholar 

  • 18.

    Laikre, L., Schwartz, M. K., Waples, R. S. & Ryman, N. Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol. Evol. 25, 520–529 (2010).

    PubMed  Google Scholar 

  • 19.

    Channell, R. & Lomolino, M. V. Trajectories to extinction: spatial dynamics of the contraction of geographical ranges. J. Biogeogr. 27, 169–179 (2000).

    Google Scholar 

  • 20.

    Bijlsma, R. & Loeschcke, V. Genetic erosion impedes adaptive responses to stressful environments. Evol. Appl. 5, 117–129 (2012).

    CAS  PubMed  Google Scholar 

  • 21.

    Ouborg, N. J., van Treuren, R. & van Damme, J. M. M. The significance of genetic erosion in the process of extinction. Oecologia 86, 359–367 (1991).

    CAS  PubMed  Google Scholar 

  • 22.

    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007).

    CAS  PubMed  Google Scholar 

  • 23.

    Sætre, G.-P. et al. Single origin of human commensalism in the house sparrow. J. Evol. Biol. 25, 788–796 (2012).

    PubMed  Google Scholar 

  • 24.

    Millette, K. L., Gonzalez, A. & Cristescu, M. E. Breaking ecological barriers: anthropogenic disturbance leads to habitat transitions, hybridization, and high genetic diversity. Sci. Total Environ. 740, 140046 (2020).

    CAS  PubMed  Google Scholar 

  • 25.

    Millette, K. L. et al. No consistent effects of humans on animal genetic diversity worldwide. Ecol. Lett. 23, 55–67 (2020).

    PubMed  Google Scholar 

  • 26.

    Allentoft, M. & O’Brien, J. Global amphibian declines, loss of genetic diversity and fitness: a review. Diversity 2, 47–71 (2010).

    Google Scholar 

  • 27.

    Blomqvist, D., Pauliny, A., Larsson, M. & Flodin, L.-Å. Trapped in the extinction vortex? Strong genetic effects in a declining vertebrate population. BMC Evol. Biol. 10, 33 (2010).

    PubMed  PubMed Central  Google Scholar 

  • 28.

    Polfus, J. L. et al. Łeghágots’enetę (learning together): the importance of indigenous perspectives in the identification of biological variation. Ecol. Soc. 21, 18 (2016).

    Google Scholar 

  • 29.

    Marin, K., Coon, A. & Fraser, D. J. Traditional ecological knowledge reveals the extent of sympatric lake trout diversity and habitat preferences. Ecol. Soc. 22, 20 (2017).

    Google Scholar 

  • 30.

    Small, N. & Munday, M. & Durance, I. The challenge of valuing ecosystem services that have no material benefits. Glob. Environ. Change 44, 57–67 (2017).

    Google Scholar 

  • 31.

    Satz, D. et al. The challenges of incorporating cultural ecosystem services into environmental assessment. Ambio 42, 675–684 (2013).

    PubMed  PubMed Central  Google Scholar 

  • 32.

    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–613 (2010).

    CAS  PubMed  Google Scholar 

  • 33.

    Rogers, L. A. et al. Centennial-scale fluctuations and regional complexity characterize Pacific salmon population dynamics over the past five centuries. Proc. Natl Acad. Sci. USA 110, 1750–1755 (2013).

    CAS  PubMed  Google Scholar 

  • 34.

    Brennan, S. R. et al. Shifting habitat mosaics and fish production across river basins. Science 364, 783–786 (2019).

    CAS  PubMed  Google Scholar 

  • 35.

    Larson, W. A., Lisi, P. J., Seeb, J. E., Seeb, L. W. & Schindler, D. E. Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon. J. Evol. Biol. 29, 1846–1859 (2016).

    CAS  PubMed  Google Scholar 

  • 36.

    Freshwater, C. et al. Individual variation, population-specific behaviours and stochastic processes shape marine migration phenologies. J. Anim. Ecol. 88, 67–78 (2018).

    PubMed  Google Scholar 

  • 37.

    Moore, J. W., McClure, M., Rogers, L. A. & Schindler, D. E. Synchronization and portfolio performance of threatened salmon. Conserv. Lett. 3, 340–348 (2010).

    Google Scholar 

  • 38.

    Satterthwaite, W. H. & Carlson, S. M. Weakening portfolio effect strength in a hatchery-supplemented Chinook salmon population complex. Can. J. Fish. Aquat. Sci. 72, 1860–1875 (2015).

    Google Scholar 

  • 39.

    Araki, H., Berejikian, B. A., Ford, M. J. & Blouin, M. S. Fitness of hatchery-reared salmonids in the wild. Evol. Appl. 1, 342–355 (2008).

    PubMed  PubMed Central  Google Scholar 

  • 40.

    Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).

    CAS  PubMed  Google Scholar 

  • 41.

    Carlson, S. M. & Satterthwaite, W. H. Weakened portfolio effect in a collapsed salmon population complex. Can. J. Fish. Aquat. Sci. 68, 1579–1589 (2011).

    Google Scholar 

  • 42.

    Maldonado, C. et al. Phylogeny predicts the quantity of antimalarial alkaloids within the iconic yellow cinchona bark (Rubiaceae: Cinchona calisaya). Front. Plant Sci. 8, 391 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 43.

    Cueva-Agila, A. et al. Genetic characterization of fragmented populations of Cinchona officinalis L. (Rubiaceae), a threatened tree of the northern Andean cloud forests. Tree Genet. Genomes 15, 81 (2019).

    Google Scholar 

  • 44.

    Simpson, R. D., Sedjo, R. A. & Reid, J. W. Valuing biodiversity for use in pharmaceutical research. J. Polit. Econ. 104, 163–185 (1996).

    Google Scholar 

  • 45.

    Graves, R. A., Pearson, S. M. & Turner, M. G. Species richness alone does not predict cultural ecosystem service value. Proc. Natl Acad. Sci. USA 114, 3774–3779 (2017).

    CAS  PubMed  Google Scholar 

  • 46.

    Darwin, C. On the Origins of Species by Means of Natural Selection (John Murray, 1859).

  • 47.

    Weldon, W. F. R. Mendel’s laws of alternative inheritance in peas. Biometrika 1, 228–254 (1902).

    Google Scholar 

  • 48.

    Courchamp, F. et al. Rarity value and species extinction: the anthropogenic allee effect. PLoS Biol. 4, e415 (2006).

    PubMed  PubMed Central  Google Scholar 

  • 49.

    Davis, J. N. Color abnormalities in birds: a proposed nomenclature for birders. Birding 39, 36–46 (2007).

    Google Scholar 

  • 50.

    Kolbe, J. J. et al. The desire for variety: Italian wall lizard (Podarcis siculus) populations introduced to the United States via the pet trade are derived from multiple native-range sources. Biol. Invasions 15, 775–783 (2013).

    Google Scholar 

  • 51.

    Tapley, B., Griffiths, R. A. & Bride, I. Dynamics of the trade in reptiles and amphibians within the United Kingdom over a ten-year period. Herpetol. J. 21, 27–34 (2011).

    Google Scholar 

  • 52.

    Militz, T. A., Foale, S., Kinch, J. & Southgate, P. C. Natural rarity places clownfish colour morphs at risk of targeted and opportunistic exploitation in a marine aquarium fishery. Aquat. Living Resour. 31, 18 (2018).

    Google Scholar 

  • 53.

    Rowley, J. J. L., Emmett, D. A. & Voen, S. Harvest, trade and conservation of the Asian arowana Scleropages formosus in Cambodia. Aquat. Conserv. Mar. Freshw. Ecosyst. 18, 1255–1262 (2008).

    Google Scholar 

  • 54.

    Clapp, R. A. Wilderness ethics and political ecology: remapping the Great Bear Rainforest. Polit. Geogr. 23, 839–862 (2004).

    Google Scholar 

  • 55.

    Cusack, C. M. Save the White Tiger. J Law Soc. Deviance 12, 1 (2016).

    Google Scholar 

  • 56.

    Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).

    CAS  PubMed  Google Scholar 

  • 57.

    Gaos, A. R. et al. Hawksbill turtle terra incognita: conservation genetics of eastern Pacific rookeries. Ecol. Evol. 6, 1251–1264 (2016).

    PubMed  PubMed Central  Google Scholar 

  • 58.

    Read, T. D. et al. Draft sequencing and assembly of the genome of the world’s largest fish, the whale shark: Rhincodon typus Smith 1828. BMC Genom. 18, 532 (2017).

    Google Scholar 

  • 59.

    Wilting, A. et al. Planning tiger recovery: understanding intraspecific variation for effective conservation. Sci. Adv. 1, e1400175 (2015).

    PubMed  PubMed Central  Google Scholar 

  • 60.

    Hedrick, P. W. Gene flow and genetic restoration: the florida panther as a case study. Conserv. Biol. 9, 996–1007 (1995).

    Google Scholar 

  • 61.

    Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 62.

    Crutsinger, G. M., Souza, L. & Sanders, N. J. Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11, 16–23 (2007).

    PubMed  Google Scholar 

  • 63.

    Lahr, E. C., Backe, K. M. & Frank, S. D. Intraspecific variation in morphology, physiology, and ecology of wildtype relative to horticultural varieties of red maple (Acer rubrum). Trees 34, 603–614 (2020).

    CAS  Google Scholar 

  • 64.

    Yoshihara, Y. & Isogai, T. Does genetic diversity of grass improve yield, digestibility, and resistance to weeds, pests and disease infection? Arch. Agron. Soil Sci. 65, 1623–1629 (2019).

    Google Scholar 

  • 65.

    Busby, P. E., Newcombe, G., Dirzo, R. & Whitham, T. G. Genetic basis of pathogen community structure for foundation tree species in a common garden and in the wild. J. Ecol. 101, 867–877 (2013).

    Google Scholar 

  • 66.

    Berrang, P., Karnosky, D. F., Mickler, R. A. & Bennett, J. P. Natural selection for ozone tolerance in Populustremuloides. Can. J. Res. 16, 1214–1216 (1986).

    CAS  Google Scholar 

  • 67.

    Kremp, A. et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol. Evol. 2, 1195–1207 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 68.

    Boyden, S., Binkley, D. & Stape, J. L. Competition among eucalyptus trees depends on genetic variation and resource supply. Ecology 89, 2850–2859 (2008).

    PubMed  Google Scholar 

  • 69.

    Crutsinger, G. M., Reynolds, W. N., Classen, A. T. & Sanders, N. J. Disparate effects of plant genotypic diversity on foliage and litter arthropod communities. Oecologia 158, 65–75 (2008).

    PubMed  Google Scholar 

  • 70.

    Dubs, F. et al. Positive effects of wheat variety mixtures on aboveground arthropods are weak and variable. Basic Appl. Ecol. 33, 66–78 (2018).

    Google Scholar 

  • 71.

    Mansion-Vaquié, A., Wezel, A. & Ferrer, A. Wheat genotypic diversity and intercropping to control cereal aphids. Agric. Ecosyst. Environ. 285, 106604 (2019).

    Google Scholar 

  • 72.

    Tooker, J. F. & Frank, S. D. Genotypically diverse cultivar mixtures for insect pest management and increased crop yields. J. Appl. Ecol. 49, 974–985 (2012).

    Google Scholar 

  • 73.

    Zhu, Y. et al. Genetic diversity and disease control in rice. Nature 406, 718–722 (2000).

    CAS  PubMed  Google Scholar 

  • 74.

    Vytopil, E. & Willis, B. L. Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier Reef: implications of coral morphology and habitat complexity. Coral Reefs 20, 281–288 (2001).

    Google Scholar 

  • 75.

    Mercado-Molina, A. E., Ruiz-Diaz, C. P. & Sabat, A. M. Branching dynamics of transplanted colonies of the threatened coral Acropora cervicornis: morphogenesis, complexity, and modeling. J. Exp. Mar. Biol. Ecol. 482, 134–141 (2016).

    Google Scholar 

  • 76.

    Lohr, K. E. & Patterson, J. T. Intraspecific variation in phenotype among nursery-reared staghorn coral Acropora cervicornis (Lamarck, 1816). J. Exp. Mar. Biol. Ecol. 486, 87–92 (2017).

    Google Scholar 

  • 77.

    Morikawa, M. K. & Palumbi, S. R. Using naturally occurring climate resilient corals to construct bleaching-resistant nurseries. Proc. Natl Acad. Sci. USA 116, 10586–10591 (2019).

    CAS  PubMed  Google Scholar 

  • 78.

    Contolini, G. M., Reid, K. & Palkovacs, E. P. Climate shapes population variation in dogwhelk predation on foundational mussels. Oecologia 192, 553–564 (2020).

    PubMed  Google Scholar 

  • 79.

    Allgeier, J. E. et al. Individual behavior drives ecosystem function and the impacts of harvest. Sci. Adv. 6, eaax8329 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 80.

    Isaac, M. E. et al. Farmer perception and utilization of leaf functional traits in managing agroecosystems. J. Appl. Ecol. 55, 69–80 (2018).

    Google Scholar 

  • 81.

    Thomas, E. et al. NTFP harvesters as citizen scientists: validating traditional and crowdsourced knowledge on seed production of Brazil nut trees in the Peruvian Amazon. PLoS ONE 12, e0183743 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 82.

    Segura, V. et al. An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat. Genet. 44, 825–830 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 83.

    Korte, A. & Farlow, A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9, 29 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 84.

    Blanchet, S., Prunier, J. G. & De Kort, H. Time to go bigger: emerging patterns in macrogenetics. Trends Genet. 33, 579–580 (2017).

    CAS  PubMed  Google Scholar 

  • 85.

    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).

    CAS  PubMed  Google Scholar 

  • 86.

    Paz-Vinas, I. et al. Systematic conservation planning for intraspecific genetic diversity. Proc. R. Soc. B Biol. Sci. 285, 20172746 (2018).

    Google Scholar 

  • 87.

    Coddington, J., Lewin, H. A., Robinson, G. E. & Kress, W. J. The Earth Biogenome Project. Biodivers. Inf. Sci. Stand. 3, e37344 (2019).

    Google Scholar 

  • 88.

    Crain, R., Cooper, C. & Dickinson, J. L. Citizen science: a tool for integrating studies of human and natural systems. Annu. Rev. Environ. Resour. 39, 641–665 (2014).

    Google Scholar 

  • 89.

    Kerstes, N. A. G., Breeschoten, T., Kalkman, V. J. & Schilthuizen, M. Snail shell colour evolution in urban heat islands detected via citizen science. Commun. Biol. 2, 264 (2019).

    PubMed  PubMed Central  Google Scholar 

  • 90.

    Searfoss, A. M., Liu, W. & Creanza, N. Geographically well-distributed citizen science data reveals range-wide variation in the chipping sparrow’s simple song. Anim. Behav. 161, 63–76 (2020).

    Google Scholar 

  • 91.

    Sauer, J. R., Link, W. A., Fallon, J. E., Pardieck, K. L. & David, J. Ziolkowski Jr. The North American Breeding Bird Survey 1966–2011: summary analysis and species accounts. North Am. Fauna 79, 1–32 (2013).

    Google Scholar 

  • 92.

    Nugent, J. iNaturalist: citizen science for 21st-century naturalists. Sci. Scope 41, 12 (2018).

    Google Scholar 

  • 93.

    McKinley, D. C. et al. Citizen science can improve conservation science, natural resource management, and environmental protection. Biol. Conserv. 208, 15–28 (2017).

    Google Scholar 

  • 94.

    Hedrick, P. W. & Garcia-Dorado, A. Understanding inbreeding depression, purging, and genetic rescue. Trends Ecol. Evol. 31, 940–952 (2016).

    PubMed  Google Scholar 

  • 95.

    Waples, R. S. Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species. Act. Mar. Fish. Rev. 53, 11–22 (1991).

    Google Scholar 

  • 96.

    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).

    CAS  PubMed  Google Scholar 

  • 97.

    Funk, W. C., McKay, J. K., Hohenlohe, P. A. & Allendorf, F. W. Harnessing genomics for delineating conservation units. Trends Ecol. Evol. 27, 489–496 (2012).

    PubMed  PubMed Central  Google Scholar 

  • 98.

    Coates, D. J., Byrne, M. & Moritz, C. Genetic diversity and conservation units: dealing with the speciespopulation continuum in the age of genomics. Front. Ecol. Evol. 6, 165 (2018).

    Google Scholar 

  • 99.

    Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).

    PubMed  Google Scholar 

  • 100.

    Goodwin, S., McPherson, J. D. & McCombie, W. R. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17, 333–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 101.

    Des Roches, S. et al. Socio-eco-evolutionary dynamics in cities. Evol. Appl. 14, 248–267 (2021).

    PubMed  Google Scholar 

  • 102.

    Drury, C. et al. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity. Ecol. Evol. 7, 6188–6200 (2017).

    PubMed  PubMed Central  Google Scholar 

  • 103.

    Vasconcelos, R. et al. Combining molecular and landscape tools for targeting evolutionary processes in reserve design: an approach for islands. PLoS ONE 13, e0200830 (2018).

    PubMed  PubMed Central  Google Scholar 

  • 104.

    Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).

    Google Scholar 

  • 105.

    Hoffmann, A. A., Sgrò, C. M. & Kristensen, T. N. Revisiting adaptive potential, population size, and conservation. Trends Ecol. Evol. 32, 506–517 (2017).

    PubMed  Google Scholar 

  • 106.

    Carlson, S. M., Cunningham, C. J. & Westley, P. A. H. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).

    PubMed  Google Scholar 

  • 107.

    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18 (2020).

    PubMed  PubMed Central  Google Scholar 

  • 108.

    Oke, K. B. et al. Recent declines in salmon body size impact ecosystems and fisheries. Nat. Commun. 11, 4155 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  • 109.

    Thompson, J., Stow, A. & Raftos, D. Lack of genetic introgression between wild and selectively bred Sydney rock oysters Saccostrea glomerata. Mar. Ecol. Prog. Ser. 570, 127–139 (2017).

    Google Scholar 

  • 110.

    Schindler, D. E., Leavitt, P. R., Brock, C. S., Johnson, S. P. & Quay, P. D. Marine-derived nutrients, commercial fisheries, and production of salmon and lake algae in Alaska. Ecology 86, 3225–3231 (2005).

    Google Scholar 

  • 111.

    Ainsworth, E. A. The importance of intraspecific variation in tree responses to elevated [CO2]: breeding and management of future forests. Tree Physiol. 36, 679–681 (2016).

    CAS  PubMed  Google Scholar 


  • Source: Ecology - nature.com

    DNA traces the origin of honey by identifying plants, bacteria and fungi

    SMART develops analytical tools to enable next-generation agriculture