Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).
Google Scholar
Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).
Google Scholar
Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).
Google Scholar
Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).
Google Scholar
Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).
Google Scholar
Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).
Google Scholar
Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).
Google Scholar
Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).
Google Scholar
Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).
Google Scholar
Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).
Google Scholar
Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).
Google Scholar
Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).
Google Scholar
Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).
Google Scholar
Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).
Google Scholar
Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).
Google Scholar
Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).
Google Scholar
Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).
Google Scholar
Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).
Google Scholar
Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).
Google Scholar
Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).
Google Scholar
Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).
Google Scholar
Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).
Google Scholar
Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).
Google Scholar
Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).
Google Scholar
Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).
Google Scholar
Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).
Google Scholar
Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).
Google Scholar
Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).
Google Scholar
Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).
Google Scholar
Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).
Google Scholar
Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).
Google Scholar
Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).
Google Scholar
Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).
Google Scholar
Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).
Google Scholar
Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).
Google Scholar
Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).
Google Scholar
Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).
Google Scholar
Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).
Google Scholar
Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).
Google Scholar
Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).
Google Scholar
De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).
Google Scholar
Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).
Google Scholar
Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).
Google Scholar
Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.
Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).
Google Scholar
Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).
Google Scholar
Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).
Google Scholar
Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).
Google Scholar
Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).
Google Scholar
Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).
Google Scholar
Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).
Google Scholar
Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).
Google Scholar
Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).
Google Scholar
Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).
Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).
Google Scholar
Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).
Google Scholar
Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).
Google Scholar
Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).
Google Scholar
Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).
Google Scholar
Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).
Google Scholar
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).
Google Scholar
Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).
Google Scholar
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).
Google Scholar
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).
Google Scholar
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.
Broad Institute. Picard Tools – By Broad Institute. Github (2009).
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).
Google Scholar
Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).
Google Scholar
Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).
Google Scholar
Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).
Google Scholar
Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).
Google Scholar
Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).
Google Scholar
Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).
Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).
Google Scholar
Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).
Google Scholar
Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).
Google Scholar
Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032.
Source: Ecology - nature.com