in

Contribution of historical herbarium small RNAs to the reconstruction of a cassava mosaic geminivirus evolutionary history

  • 1.

    Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro-ecosystems. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.010708.154114 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Savary, S., Ficke, A., Aubertot, J. N. & Hollier, C. Crop losses due to diseases and their implications for global food production losses and food security. Food Secur. https://doi.org/10.1007/s12571-012-0200-5 (2012).

    Article 

    Google Scholar 

  • 3.

    Strange, R. N. & Scott, P. R. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. https://doi.org/10.1146/annurev.phyto.43.113004.133839 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Anderson, P. K. et al. Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2004.07.021 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Scholthof, K. B. G. et al. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2011.00752.x (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Stukenbrock, E. H. & Bataillon, T. A population genomics perspective on the emergence and adaptation of new plant pathogens in agro-ecosystems. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002893 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Gilligan, C. A. Sustainable agriculture and plant diseases: an epidemiological perspective. Philos. Trans. R. Soc. B: Biol. Sci. https://doi.org/10.1098/rstb.2007.2181 (2008).

    Article 

    Google Scholar 

  • 8.

    Li, L. M., Grassly, N. C. & Fraser, C. Genomic analysis of emerging pathogens: methods, application and future trends. Genome Biol.ogy https://doi.org/10.1186/s13059-014-0541-9 (2014).

    Article 

    Google Scholar 

  • 9.

    Lemey, P., Rambaut, A., Drummond, A. J. & Suchard, M. A. Bayesian phylogeography finds its roots. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000520 (2009).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Lefeuvre, P. et al. The spread of tomato yellow leaf curl virus from the middle east to the world. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001164 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Monjane, A. L. et al. Reconstructing the history of maize streak virus strain A dispersal tor reveal diversification hot spots and its origin in southern Africa. J. Virol. https://doi.org/10.1128/jvi.00640-11 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Trovao, N. S. et al. Host ecology determines the dispersal patterns of a plant virus. Virus Evol. https://doi.org/10.1093/ve/vev016 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Rakotomalala, M. et al. Comparing patterns and scales of plant virus phylogeography: rice yellow mottle virus in Madagascar and in continental Africa. Virus Evol. https://doi.org/10.1093/ve/vez023 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Gibbs, A. J., Fargette, D., García-Arenal, F. & Gibbs, M. J. Time – The emerging dimension of plant virus studies. J General Virol. https://doi.org/10.1099/vir.0.015925-0 (2010).

    Article 

    Google Scholar 

  • 15.

    Simmonds, P., Aiewsakun, P. & Katzourakis, A. Prisoners of war: host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-018-0120-2 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Jones, R. A. C., Boonham, N., Adams, I. P. & Fox, A. Historical virus isolate collections: an invaluable resource connecting plant virology’s pre-sequencing and post-sequencing eras. Plant Pathol. 70, 235–248 (2021).

    Article 

    Google Scholar 

  • 17.

    Smith, O. et al. A complete ancient RNA genome: Identification, reconstruction and evolutionary history of archaeological Barley Stripe Mosaic Virus. Sci. Rep. https://doi.org/10.1038/srep04003 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Malmstrom, C. M., Shu, R., Linton, E. W., Newton, L. A. & Cook, M. A. Barley yellow dwarf viruses (BYDVs) preserved in herbarium specimens illuminate historical disease ecology of invasive and native grasses. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01307.x (2007).

    Article 

    Google Scholar 

  • 19.

    Peyambari, M., Warner, S., Stoler, N., Rainer, D. & Roossinck, M. J. A 1000-Year-old RNA virus. J. Virol. 93, e01188-18 (2019).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Adams, I. P. et al. Next-generation sequencing and metagenomic analysis: a universal diagnostic tool in plant virology. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00545.x (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Vayssier-Taussat, M. et al. Shifting the paradigm from pathogens to pathobiome new concepts in the light of meta-omics. Front. Cell. Infect. Microbiol. https://doi.org/10.3389/fcimb.2014.00029 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Massart, S., Olmos, A., Jijakli, H. & Candresse, T. Current impact and future directions of high throughput sequencing in plant virus diagnostics. Virus Res. https://doi.org/10.1016/j.virusres.2014.03.029 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Roossinck, M. J., Martin, D. P. & Roumagnac, P. Plant virus metagenomics: advances in virus discovery. Phytopathology https://doi.org/10.1094/PHYTO-12-14-0356-RVW (2015).

    Article 
    PubMed 

    Google Scholar 

  • 24.

    Kreuze, J. F. et al. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology https://doi.org/10.1016/j.virol.2009.03.024 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Pooggin, M. M. Small RNA-omics for plant virus identification, virome reconstruction, and antiviral defense characterization. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.02779 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Hartung, J. S. et al. History and diversity of Citrus Leprosis virus recorded in herbarium specimens. Phytopathology https://doi.org/10.1094/PHYTO-03-15-0064-R (2015).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Golyaev, V., Candresse, T., Rabenstein, F. & Pooggin, M. M. Plant virome reconstruction and antiviral RNAi characterization by deep sequencing of small RNAs from dried leaves. Sci. Rep. https://doi.org/10.1038/s41598-019-55547-3 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Patil, B. L. & Fauquet, C. M. Cassava mosaic geminiviruses: actual knowledge and perspectives. Mol. Plant Pathol. https://doi.org/10.1111/j.1364-3703.2009.00559.x (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Legg, J. P., Owor, B., Sseruwagi, P. & Ndunguru, J. Cassava mosaic virus disease in east and central Africa: epidemiology and management of a regional pandemic. Adv. Virus Res. https://doi.org/10.1016/S0065-3527(06)67010-3 (2006).

    Article 
    PubMed 

    Google Scholar 

  • 30.

    Wang, H. L. et al. First report of Sri Lankan cassava mosaic virus infecting cassava in Cambodia. Plant Dis. https://doi.org/10.1094/PDIS-10-15-1228-PDN (2016).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Minato, N. et al. Surveillance for sri lankan cassava mosaic virus (SLCMV) in Cambodia and Vietnam one year after its initial detection in a single plantation in 2015. PLoS One https://doi.org/10.1371/journal.pone.0212780 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Mugerwa, H., Wang, H. L., Sseruwagi, P., Seal, S. & Colvin, J. Whole-genome single nucleotide polymorphism and mating compatibility studies reveal the presence of distinct species in sub-Saharan Africa Bemisia tabaci whiteflies. Insect Sci. https://doi.org/10.1111/1744-7917.12881 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Ntawuruhunga, P. et al. Incidence and severity of cassava mosaic disease in the Republic of Congo. African Crop Sci. J. https://doi.org/10.4314/acsj.v15i1.54405 (2010).

    Article 

    Google Scholar 

  • 34.

    Zinga, I. et al. Epidemiological assessment of cassava mosaic disease in Central African Republic reveals the importance of mixed viral infection and poor health of plant cuttings. Crop Prot. https://doi.org/10.1016/j.cropro.2012.10.010 (2013).

    Article 

    Google Scholar 

  • 35.

    Jeske, H. Geminiviruses. Curr. Topics Microbiol. Immunol. https://doi.org/10.1007/978-3-540-70972-5_11 (2009).

    Article 

    Google Scholar 

  • 36.

    Vanitharani, R., Chellappan, P. & Fauquet, C. M. Geminiviruses and RNA silencing. Trends Plant Sci. https://doi.org/10.1016/j.tplants.2005.01.005 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 37.

    Aregger, M. et al. Primary and secondary siRNAs in geminivirus-induced gene silencing. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1002941 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Olsen, K. M. & Schaal, B. A. Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.96.10.5586 (1999).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Fauquet, C. African cassava mosaic virus: etiology, epidemiology, and control. Plant Dis. https://doi.org/10.1094/pd-74-0404 (1990).

    Article 

    Google Scholar 

  • 40.

    Legg, J. P. & Fauquet, C. M. Cassava mosaic geminiviruses in Africa. Plant Mol. Biol. https://doi.org/10.1007/s11103-004-1651-7 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 41.

    De Bruyn, A. et al. Divergent evolutionary and epidemiological dynamics of cassava mosaic geminiviruses in Madagascar. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0749-2 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Weiß, C. L. et al. Temporal patterns of damage and decay kinetics of dna retrieved from plant herbarium specimens. R. Soc. Open Sci. https://doi.org/10.1098/rsos.160239 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Chellappan, P., Vanitharani, R., Ogbe, F. & Fauquet, C. M. Effect of temperature on geminivirus-induced RNA silencing in plants. Plant Physiol. https://doi.org/10.1104/pp.105.066563 (2005).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Smith, O. & Gilbert, M. T. P. Ancient RNA. in (2018). doi:https://doi.org/10.1007/13836_2018_17.

  • 45.

    Filloux, D. et al. The genomes of many yam species contain transcriptionally active endogenous geminiviral sequences that may be functionally expressed. Virus Evol. https://doi.org/10.1093/ve/vev002 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Sharma, V. et al. Large-scale survey reveals pervasiveness and potential function of endogenous geminiviral sequences in plants. Virus Evol. https://doi.org/10.1093/ve/veaa071 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Bredeson, J. V. et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity. Nat. Biotechnol. https://doi.org/10.1038/nbt.3535 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 48.

    Serfraz, S. et al. Insertion of Badnaviral DNA in the Late Blight Resistance Gene (R1a) of Brinjal Eggplant (Solanum melongena). Front. Plant Sci. https://doi.org/10.3389/fpls.2021.683681 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Lefeuvre, P. et al. Evolutionary time-scale of the begomoviruses: evidence from integrated sequences in the Nicotiana genome. PLoS One https://doi.org/10.1371/journal.pone.0019193 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. https://doi.org/10.1093/ve/vev003 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Murray, G. G. R. et al. The effect of genetic structure on molecular dating and tests for temporal signal. Methods Ecol. Evol. 7, 80–89 (2016).

    Article 

    Google Scholar 

  • 52.

    Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. https://doi.org/10.1186/1471-2148-7-214 (2007).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Yoshida, K. et al. Mining herbaria for plant pathogen genomes: back to the future. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004028 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Dufrénoy, J. & Hédin, L. . La. Mosaïque des feuilles du Manioc au Cameroun. J. d’agriculture Tradit. Bot. appliquée 94, 361–365 (1929).

    Google Scholar 

  • 55.

    Duffy, S. & Holmes, E. C. Validation of high rates of nucleotide substitution in geminiviruses: phylogenetic evidence from East African cassava mosaic viruses. J. Gen. Virol. 90, 1539–1547 (2009).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Worobey, M. et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature https://doi.org/10.1038/nature07390 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Mühlemann, B. et al. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature https://doi.org/10.1038/s41586-018-0097-z (2018).

    Article 
    PubMed 

    Google Scholar 

  • 58.

    Toppinen, M. et al. Bones hold the key to DNA virus history and epidemiology. Sci. Rep. https://doi.org/10.1038/srep17226 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Gilbert, M. T. P., Bandelt, H. J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2005.07.005 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Inoue-Nagata, A. K., Albuquerque, L. C., Rocha, W. B. & Nagata, T. A simple method for cloning the complete begomovirus genome using the bacteriophage φ29 DNA polymerase. J. Virol. Methods https://doi.org/10.1016/j.jviromet.2003.11.015 (2004).

    Article 
    PubMed 

    Google Scholar 

  • 61.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics https://doi.org/10.1093/bioinformatics/btu170 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Zheng, Y. et al. VirusDetect: An automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology https://doi.org/10.1016/j.virol.2016.10.017 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 63.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics https://doi.org/10.1093/bioinformatics/btp324 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. https://doi.org/10.1186/gb-2009-10-3-r25 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. MapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. in Bioinformatics (2013). doi:https://doi.org/10.1093/bioinformatics/btt193.

  • 66.

    Broad Institute. Picard Tools – By Broad Institute. Github (2009).

  • 67.

    Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics https://doi.org/10.1093/bioinformatics/btq033 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. https://doi.org/10.1101/gr.092759.109 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Depristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. https://doi.org/10.1038/ng.806 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Bankevich, A. et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. https://doi.org/10.1089/cmb.2012.0021 (2012).

    MathSciNet 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. https://doi.org/10.1093/molbev/mst010 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. JModelTest 2: More models, new heuristics and parallel computing. Nat. Methods https://doi.org/10.1038/nmeth.2109 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Jombart, T. & Dray, S. Adephylo: Exploratory analyses for the phylogenetic comparative method. Bioinformatics (2010).

  • 75.

    Duchêne, S., Duchêne, D., Holmes, E. C. & Ho, S. Y. W. The performance of the date-randomization test in phylogenetic analyses of time-structured virus data. Mol. Biol. Evol. 32, 1895–1906 (2015).

    Article 

    Google Scholar 

  • 76.

    Rieux, A. & Khatchikian, C. E. Tipdatingbeast: an r package to assist the implementation of phylogenetic tip-dating tests using beast. Mol. Ecol. Resour. https://doi.org/10.1111/1755-0998.12603 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 77.

    Raftery, A. E. Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika https://doi.org/10.1093/biomet/83.2.251 (1996).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • 78.

    Ho, S. Y. W. & Shapiro, B. Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol. Ecol. Resour. https://doi.org/10.1111/j.1755-0998.2011.02988.x (2011).

    Article 
    PubMed 

    Google Scholar 

  • 79.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. (2018) doi:https://doi.org/10.1093/sysbio/syy032.


  • Source: Ecology - nature.com

    Global potential for harvesting drinking water from air using solar energy

    Post-fire insect fauna explored by crown fermental traps in forests of the European Russia