in

Contribution of Vouacapoua americana fruit-fall to the release of biomass in a lowland Amazon forest

[adace-ad id="91168"]
  • 1.

    Diaz-Martin, Z., Swamy, V., Terborgh, J., Alvarez-Loayza, P. & Cornejo, F. Identifying keystone plant resources in an Amazonian forest using a long-term fruit-fall record. J. Trop. Ecol. 30, 291–301. https://doi.org/10.1017/S0266467414000248 (2014).

    Article  Google Scholar 

  • 2.

    Terborgh, J. & Andresen, E. The composition of Amazonian forests: Patterns at local and regional scales. J. Trop. Ecol. 14, 645–664 (1998).

    Article  Google Scholar 

  • 3.

    Wright, J. S. Plant diversity in tropical forests: A review of mechanisms of species coexistence. Oecologia 130, 1–14. https://doi.org/10.1007/s004420100809 (2002).

    ADS  Article  Google Scholar 

  • 4.

    Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: The architecture of biodiversity. Annu. Rev. Ecol. Evol. Syst. 38, 567–593. https://doi.org/10.1146/annurev.ecolsys.38.091206.095818 (2007).

    Article  MATH  Google Scholar 

  • 5.

    Chapman, C. A., Wrangham, R. & Chapman, L. J. Indexes of habitat-wide fruit abundance in tropical forests. Biotropica 26, 160–171. https://doi.org/10.2307/2388805 (1994).

    Article  Google Scholar 

  • 6.

    White, L. J. T. Patterns of fruit-fall phenology in the Lopé Reserve, Gabon. J. Trop. Ecol. 10, 289–312. https://doi.org/10.1017/S0266467400007975 (1994).

    Article  Google Scholar 

  • 7.

    Bello, C. et al. Defaunation affects carbon storage in tropical forests. Sci. Adv. https://doi.org/10.1126/sciadv.1501105 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 8.

    Peres, C. A., Emilio, T., Schietti, J., Desmoulière, S. J. & Levi, T. Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. Proc. Natl. Acad. Sci. 113, 892–897 (2016).

    ADS  CAS  Article  Google Scholar 

  • 9.

    Dee, L. E. et al. When do ecosystem services depend on rare species?. Trends Ecol. Evol. 34, 746–758. https://doi.org/10.1016/j.tree.2019.03.010 (2019).

    Article  PubMed  Google Scholar 

  • 10.

    Pinho, B. X., Peres, C. A., Leal, I. R. & Tabarelli, M. In Tropical Ecosystems in the 21st Century (eds Alex, J. D., Edgar, C. T., & Tom, M. F.) Ch. 7, 253–294 (Academic Press, Cambridge, 2020).

  • 11.

    Bastin, J.-F. et al. Pan-tropical prediction of forest structure from the largest trees. Glob. Ecol. Biogeogr. 27, 1366–1383. https://doi.org/10.1111/geb.12803 (2018).

    Article  Google Scholar 

  • 12.

    Lutz, J. A. et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 27, 849–864. https://doi.org/10.1111/geb.12747 (2018).

    Article  Google Scholar 

  • 13.

    Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and dynamics after selective logging in the Eastern Amazon. For. Ecol. Manag. 318, 103–109. https://doi.org/10.1016/j.foreco.2014.01.005 (2014).

    Article  Google Scholar 

  • 14.

    Schulze, M., Grogan, J., Landis, R. M. & Vidal, E. How rare is too rare to harvest? Management challenges posed by timber species occurring at low densities in the Brazilian Amazon. For. Ecol. Manag. 256, 1443–1457. https://doi.org/10.1016/j.foreco.2008.02.051 (2008).

    Article  Google Scholar 

  • 15.

    SFB. Florestas do Brasil em resumo 2013: dados de 2007–2012. (2013).

  • 16.

    Azevedo-Ramos, C., Silva, J. N. M. & Merry, F. The evolution of Brazilian forest concessions. Elem. Sci. Anth. https://doi.org/10.12952/journal.elementa.000048 (2015).

    Article  Google Scholar 

  • 17.

    Golden Kroner, R. E. et al. The uncertain future of protected lands and waters. Science 364, 881. https://doi.org/10.1126/science.aau5525 (2019).

    ADS  CAS  Article  Google Scholar 

  • 18.

    Degen, B. et al. Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol. Cons. 131, 386–401. https://doi.org/10.1016/j.biocon.2006.02.014 (2006).

    Article  Google Scholar 

  • 19.

    Richardson, V. A. & Peres, C. A. Temporal decay in timber species composition and value in Amazonian logging concessions. PLoS ONE 11, e0159035. https://doi.org/10.1371/journal.pone.0159035 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 20.

    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Change 9, 384–388. https://doi.org/10.1038/s41558-019-0458-0 (2019).

    ADS  Article  Google Scholar 

  • 21.

    Nepstad, D. et al. Amazon drought and its implications for forest flammability and tree growth: A basin-wide analysis. Glob. Change Biol. 10, 704–717 (2004).

    ADS  Article  Google Scholar 

  • 22.

    Vidal, E., West, T. A. & Putz, F. E. Recovery of biomass and merchantable timber volumes twenty years after conventional and reduced-impact logging in Amazonian Brazil. For. Ecol. Manag. 376, 1–8. https://doi.org/10.1016/j.foreco.2016.06.003 (2016).

    Article  Google Scholar 

  • 23.

    Varty, N. & Guadagnin, D. L. Vouacapoua americana. The IUCN Red List of Threatened Species: e.T33918A9820054, https://doi.org/10.2305/IUCN.UK.1998.RLTS.T33918A9820054.en (1998).

  • 24.

    Dutech, C., Maggia, L., Tardy, C., Joly, H. I. & Jarne, P. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana aublet in french guiana. Evolution 57, 2753–2764 (2003).

    Article  Google Scholar 

  • 25.

    Guimarães, P. R. Jr., Galetti, M. & Jordano, P. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS ONE 3, e1745. https://doi.org/10.1371/journal.pone.0001745 (2008).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 26.

    Traissac, S. & Pascal, J. P. Birth and life of tree aggregates in tropical forest: Hypotheses on population dynamics of an aggregated shade-tolerant species. J. Veg. Sci. 25, 491–502. https://doi.org/10.1111/jvs.12080 (2014).

    Article  Google Scholar 

  • 27.

    Forget, P.-M. Seed-dispersal of Vouacapoua americana (Caesalpiniaceae) by caviomorph rodents in French Guiana. J. Trop. Ecol. 6, 459–468. https://doi.org/10.1017/S0266467400004867 (1990).

    Article  Google Scholar 

  • 28.

    Jansen, P. A., Bongers, F. & van der Meer, P. J. Is farther seed dispersal better? Spatial patterns of offspring mortality in three rainforest tree species with different dispersal abilities. Ecography 31, 43–52. https://doi.org/10.1111/j.2007.0906-7590.05156.x (2008).

    Article  Google Scholar 

  • 29.

    MMA. Vol. 18/12/2014 (ed Ministério do Meio Ambiente—MMA) 110–121 (Diário Oficial da União, Brasilia, 2014).

  • 30.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Change Biol. 22, 1406–1420. https://doi.org/10.1111/gcb.13139 (2016).

    ADS  Article  Google Scholar 

  • 31.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185. https://doi.org/10.1038/nclimate1354 (2012).

    ADS  CAS  Article  Google Scholar 

  • 32.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904. https://doi.org/10.1073/pnas.1019576108 (2011).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  • 33.

    Saatchi, S. S., Houghton, R. A., Dos Santos AlvalÁ, R. C., Soares, J. V. & Yu, Y. Distribution of aboveground live biomass in the Amazon basin. Glob. Change Biol. 13, 816–837. https://doi.org/10.1111/j.1365-2486.2007.01323.x (2007).

    ADS  Article  Google Scholar 

  • 34.

    Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667. https://doi.org/10.1111/j.1365-2745.2008.01399.x (2008).

    Article  Google Scholar 

  • 35.

    Mendoza, I. et al. Does masting result in frugivore satiation? A test with Manilkara trees in French Guiana. J. Trop. Ecol. 31, 553–556. https://doi.org/10.1017/S0266467415000425 (2015).

    Article  Google Scholar 

  • 36.

    Kelly, D. The evolutionary ecology of mast seeding. Trends Ecol. Evol. 9, 465–470. https://doi.org/10.1016/0169-5347(94)90310-7 (1994).

    CAS  Article  PubMed  Google Scholar 

  • 37.

    Kelly, D. & Sork, V. L. Mast seeding in perennial plants: Why, how, where?. Annu. Rev. Ecol. Syst. 33, 427–447. https://doi.org/10.1146/annurev.ecolsys.33.020602.095433 (2002).

    Article  Google Scholar 

  • 38.

    Johnson, M. O. et al. Variation in stem mortality rates determines patterns of above-ground biomass in Amazonian forests: Implications for dynamic global vegetation models. Glob. Change Biol. 22, 3996–4013 (2016).

    ADS  Article  Google Scholar 

  • 39.

    Batista, A. P. B. et al. Caracterização estrutural em uma floresta de terra firme no estado do Amapá, Brasil. Pesq. flor. bras 35, 21–33 (2015).

    Article  Google Scholar 

  • 40.

    Charles-Dominique, P. et al. Les mammiferes frugivores arboricoles nocturnes d’une foret guyanaise: Inter-relations plantes-animaux. La Terre et la Vie: Revue d’Ecologie Appliquée 35, 341–435 (1981).

    Google Scholar 

  • 41.

    de Oliveira, A. N. & do Amaral, I. L. ,. Florística e fitossociologia de uma floresta de vertente na Amazônia Central, Amazonas, Brasil. Acta Amazonica 34, 21–34 (2004).

    Article  Google Scholar 

  • 42.

    Pereira, L. A., Pinto Sobrinho, F. D. A. & Costa Neto, S. V. D. Florística e estrutura de uma mata de terra firme na reserva de desenvolvimento sustentável rio Iratapuru, Amapá, Amazônia Oriental, Brasil. (2011).

  • 43.

    Pereira, L. A., Sena, K. S., dos Santos, M. R. & Neto, S. V. C. Aspectos florísticos da FLONA do Amapá e sua importância na conservação da biodiversidade. Revista Brasileira de Biociências 5, 693–695 (2007).

    Google Scholar 

  • 44.

    Sabatier, D. Saisonnalité et déterminisme du pic de fructification en forêt guyanaise. Revue d’Ecologie (Terrre et Vie) 40, 89–320 (1985).

    Google Scholar 

  • 45.

    ter Steege, H. et al. An analysis of the floristic composition and diversity of Amazonian forests including those of the Guiana Shield. J. Trop. Ecol. 16, 801–828 (2000).

    Article  Google Scholar 

  • 46.

    Hanya, G. et al. Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography 34, 1009–1017. https://doi.org/10.1111/j.1600-0587.2010.06775.x (2011).

    Article  Google Scholar 

  • 47.

    Situmorang, J. P. & Sugianto, S. Estimation of carbon stock stands using EVI and NDVI vegetation index in production forest of Lembah Seulawah Sub-District, Aceh Indonesia. Aceh Int. J. Sci. Technol. 5 (2016).

  • 48.

    Asner, G. P. et al. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 355, 385–389. https://doi.org/10.1126/science.aaj1987 (2017).

    ADS  CAS  Article  PubMed  Google Scholar 

  • 49.

    Bhardwaj, D., Banday, M., Pala, N. A. & Rajput, B. S. Variation of biomass and carbon pool with NDVI and altitude in sub-tropical forests of northwestern Himalaya. Environ. Monit. Assess. 188, 635 (2016).

    CAS  Article  Google Scholar 

  • 50.

    Dubayah, R. O. et al. Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG000933 (2010).

    Article  Google Scholar 

  • 51.

    Holly, K. G., Sandra, B., John, O. N. & Jonathan, A. F. Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environ. Res. Lett. 2, 045023 (2007).

    Article  Google Scholar 

  • 52.

    Asner, G. P. et al. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. 107, 16738–16742 (2010).

    ADS  CAS  Article  Google Scholar 

  • 53.

    Magnusson, W. et al. Biodiversidade e monitoramento ambiental integrado (Biodiversity and Integrated Environmental Monitoring). 335 (PPBio INPA, 2013).

  • 54.

    Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen–Geiger climate classification updated. Meteorol. Z. 15, 259–263. https://doi.org/10.1127/0941-2948/2006/0130 (2006).

    Article  Google Scholar 

  • 55.

    ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de Águas[[nl]]National Water Agency. http://www.hidroweb.ana.gov.br, 2016).

  • 56.

    ICMBio. Vol. I (ed MINISTÉRIO DO MEIO AMBIENTE) 222 (Instituto Chico Mendes de Conservação da Biodiversidade, Macapá, Amapá, 2014).

  • 57.

    Eswaran, H., Ahrens, R., Rice, T. J. & Stewart, B. A. Soil Classification: A Global Desk Reference. (CRC Press, Boca Raton, 2002).

  • 58.

    Dutech, C., Maggia, L. & Joly, H. I. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).

    CAS  Article  PubMed  Google Scholar 

  • 59.

    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science https://doi.org/10.1126/science.1243092 (2013).

    Article  PubMed  Google Scholar 

  • 60.

    Kido, T., Taniguchi, M. & Baba, K. Diterpenoids from Amazonian crude drug of Fabaceae. Chem. Pharm. Bull. 51, 207–208. https://doi.org/10.1248/cpb.51.207 (2003).

    CAS  Article  Google Scholar 

  • 61.

    Maurya, R., Ravi, M., Singh, S. & Yadav, P. P. A review on cassane and norcassane diterpenes and their pharmacological studies. Fitoterapia 83, 272–280. https://doi.org/10.1016/j.fitote.2011.12.007 (2012).

    CAS  Article  PubMed  Google Scholar 

  • 62.

    Alves, J. C. Z. O. & Miranda, I. D. S. Análise da estrutura de comunidades arbóreas de uma floresta amazônica de Terra Firme aplicada ao manejo florestal. Acta Amazonica 38, 657–666 (2008).

    Article  Google Scholar 

  • 63.

    Forget, P. M., Mercier, F. & Collinet, F. Spatial patterns of two rodent-dispersed rain forest trees Carapa procera (Meliaceae) and Vouacapoua americana (Caesalpiniaceae) at Paracou, French Guiana. J. Trop. Ecol. 15, 301–313. https://doi.org/10.1017/s0266467499000838 (1999).

    Article  Google Scholar 

  • 64.

    Forget, P.-M. Ten-year seedling dynamics in Vouacapoua americana in French Guiana: A hypothesis. Biotropica 29, 124–126 (1997).

    Article  Google Scholar 

  • 65.

    Forget, P. M. Recruitment pattern of Vouacapoua-Americana (Caesalpiniaceae), a rodent-dispersed tree specie in French-Guiana. Biotropica 26, 408–419. https://doi.org/10.2307/2389235 (1994).

    Article  Google Scholar 

  • 66.

    Forget, P. M. Effect of microhabitat on seed fate and seedling performance in two rodent-dispersed tree species in rain forest in French Guiana. J. Ecol. 85, 693–703. https://doi.org/10.2307/2960539 (1997).

    Article  Google Scholar 

  • 67.

    Zhang, S. Y. & Wang, L. X. Comparison of 3 fruit census methods in French-Guiana. J. Trop. Ecol. 11, 281–294 (1995).

    Article  Google Scholar 

  • 68.

    Stevenson, P. R. The relationship between fruit production and primate abundance in Neotropical communities. Biol. J. Lin. Soc. 72, 161–178. https://doi.org/10.1006/bijl.2000.049 (2001).

    Article  Google Scholar 

  • 69.

    Norris, D., Rodriguez Chuma, V. J. U., Arevalo-Sandi, A. R., Landazuri Paredes, O. S. & Peres, C. A. Too rare for non-timber resource harvest? Meso-scale composition and distribution of arborescent palms in an Amazonian sustainable-use forest. For. Ecol. Manag. 377, 182–191. https://doi.org/10.1016/j.foreco.2016.07.008 (2016).

    Article  Google Scholar 

  • 70.

    Paredes, O. S. L., Norris, D., Oliveira, T. G. D. & Michalski, F. Water availability not fruitfall modulates the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. PLoS ONE 12, e0174049. https://doi.org/10.1371/journal.pone.0174049 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 71.

    Magnusson, W. E. et al. RAPELD: A modification of the Gentry method for biodiversity surveys in long-term ecological research sites. Biota. Neotrop. 5, 19–24. https://doi.org/10.1590/s1676-06032005000300002 (2005).

    Article  Google Scholar 

  • 72.

    Norris, D., Fortin, M.-J. & Magnusson, W. E. Towards monitoring biodiversity in Amazonian forests: How regular samples capture meso-scale altitudinal variation in 25 km(2) plots. PLoS ONE https://doi.org/10.1371/journal.pone.0106150 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 73.

    The Angiosperm Phylogeny Group. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot. J. Linn. Soc. 161, 105–121. https://doi.org/10.1111/j.1095-8339.2009.00996.x (2009).

    Article  Google Scholar 

  • 74.

    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).

    Article  Google Scholar 

  • 75.

    Platts, P. J., McClean, C. J., Lovett, J. C. & Marchant, R. Predicting tree distributions in an East African biodiversity hotspot: Model selection, data bias and envelope uncertainty. Ecol. Model. 218, 121–134. https://doi.org/10.1016/j.ecolmodel.2008.06.028 (2008).

    Article  Google Scholar 

  • 76.

    Camarero, J. J., Albuixech, J., López-Lozano, R., Casterad, M. A. & Montserrat-Martí, G. An increase in canopy cover leads to masting in Quercus ilex. Trees 24, 909–918. https://doi.org/10.1007/s00468-010-0462-5 (2010).

    Article  Google Scholar 

  • 77.

    Fernández-Martínez, M., Garbulsky, M., Peñuelas, J., Peguero, G. & Espelta, J. M. Temporal trends in the enhanced vegetation index and spring weather predict seed production in Mediterranean oaks. Plant Ecol. 216, 1061. https://doi.org/10.1007/s11258-015-0489-1 (2015).

    Article  Google Scholar 

  • 78.

    Fortin, M.-J. & Dale, M. R. T. Spatial Analysis: A Guide for Ecologists. 365 (Cambridge University Press, Cambridge, 2005).

  • 79.

    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models. Vol. 43 (CRC Press, Boca Raton, 1990).

  • 80.

    Wood, S. Generalized Additive Models: An Introduction with R. (CRC Press, Boca Raton, 2006).

  • 81.

    Wood, S. N. & Augustin, N. H. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecol. Model. 157, 157–177. https://doi.org/10.1016/S0304-3800(02)00193-X (2002).

    Article  Google Scholar 

  • 82.

    R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2016).

  • 83.

    Burnham, K. P. & Anderson, D. R. Model Selection and Multi-model Inference: A Practical Information-Theoretic Approach. (Springer, New York, 2002).

  • 84.

    Pebesma, E. J. Multivariable geostatistics in S: The gstat package. Comput. Geosci. 30, 683–691. https://doi.org/10.1016/j.cageo.2004.03.012 (2004).

    ADS  Article  Google Scholar 

  • 85.

    Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

    Google Scholar 

  • 86.

    e1071: Misc Functions of the Department of Statistics, Probability Theory Group v. 1.6-8 (2017).


  • Source: Ecology - nature.com

    Synergistic epistasis enhances the co-operativity of mutualistic interspecies interactions

    Keeping an eye on the fusion future