in

Conversion of marginal land into switchgrass conditionally accrues soil carbon but reduces methane consumption

  • 1.

    Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT. On the cause of the 1930s Dust Bowl. Science. 2004;303:1855–9.

  • 2.

    Worster D. Dust bowl: the Southern plains in the 1930s (Oklahoma and Kansas). Dust bowl South Plains 1930s (Oklahoma Kansas). Oxford University Press; 1982; p. 15–50.

  • 3.

    Baumhardt LR. Dust Bowl Era. In: Encyclopedia of water science. New York: Marcel Dekker; 2003.

  • 4.

    Gelfand I, Sahajpal R, Zhang X, Izaurralde RC, Gross KL, Robertson GP. Sustainable bioenergy production from marginal lands in the US Midwest. Nature. 2013:493;514–7.

  • 5.

    Bouton JH. Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev. 2007;6:553–8.

  • 6.

    Bouton, J. Genetic improvement of bioenergy crops. In: Vermerris W editors. Springer Science and Business Media; 2008. p. 295–308.

  • 7.

    Milbrandt AR, Heimiller DM, Perry AD, Field CB. Renewable energy potential on marginal lands in the United States. Renew Sustain Energy Rev. 2014;29:473–81.

  • 8.

    Stoof CR, Richards BK, Woodbury PB, Fabio ES, Brumbach AR, Cherney J, et al. Untapped potential: opportunities and challenges for sustainable bioenergy production from marginal lands in the northeast USA. Bioenergy Res. 2015;8:482–501.

  • 9.

    McLaughlin SB, Kszos LA. Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy. 2005;28:515–35.

  • 10.

    Ditomaso JM, Barney JN, Mann JJ, Kyser G. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps. Calif. Agric. 2013;67:96–103.

  • 11.

    Tilman D, Hill J, Lehman C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science. 2006;314:1598–1600.

  • 12.

    Ma Z, Wood CW, Bransby DI. Soil management impacts on soil carbon sequestration by switchgrass. Biomass Bioenergy. 2000;18:469–77.

  • 13.

    Slessarev EW, Nuccio EE, McFarlane KJ, Ramon CE, Saha M, Firestone MK, et al. Quantifying the effects of switchgrass (Panicum virgatum) on deep organic C stocks using natural abundance 14C in three marginal soils. GCB Bioenergy. 2020;12:834–47.

  • 14.

    Anderson-Teixeria KJ, Davis SC, Masters MD, Delucia EH. Changes in soil organic carbon under biofuel crops. GCB Bioenergy. 2009;1:75–96.

  • 15.

    Barney JN, Mann JJ, Kyser GB, Blumwald E, Van Deynze A, DiTomaso JM Tolerance of switchgrass to extreme soil moisture stress: Ecological implications. Plant Sci. 2009;177:724–32.

  • 16.

    Tiemann LK, Grandy AS. Mechanisms of soil carbon accrual and storage in bioenergy cropping systems. GCB Bioenergy. 2015;7:161–74.

  • 17.

    Sher Y, Baker NR, Herman D, Fossum C, Hale L, Zhang X, et al. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biol Biochem. 2020;143:107907.

  • 18.

    Liebig MA, Schmer MR, Vogel KP, Mitchell RB. Soil carbon storage by switchgrass grown for bioenergy. Bioenergy Res. 2008;1:215–22.

  • 19.

    Zan CS, Fyles JW, Girouard P, Samson RA. Carbon sequestration in perennial bioenergy, annual corn and uncultivated systems in southern Quebec. Agric Ecosyst Environ. 2001;86:135–44.

  • 20.

    Frank AB, Berdahl JD, Hanson JD, Liebig MA, Johnson HA. Biomass and carbon partitioning in switchgrass. Crop Sci. 2004;44:1391–6.

  • 21.

    Dabney SM, Shields FD, Temple DM, Langendoen EJ. Erosion processes in gullies modified by establishing grass hedges. Trans Am Soc Agric Eng. 2004;47:1561–71.

  • 22.

    Cheng W, Parton WJ, Gonzalez-Meler MA, Phillips R, Asao S, Mcnickle GG, et al. Synthesis and modeling perspectives of rhizosphere priming. New Phytol. 2014;201:31–44.

  • 23.

    Ashiq MW, Bazrgar AB, Fei H, Coleman B, Vessey K, Gordon A, et al. A nutrient-based sustainability assessment of purpose-grown poplar and switchgrass biomass production systems established on marginal lands in Canada. Can J Plant Sci. 2017;98:255–66.

  • 24.

    Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C. Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature. 2007;450:277–80.

  • 25.

    Shahzad T, Rashid MI, Maire V, Barot S, Perveen N, Alvarez G, et al. Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon. Soil Biol Biochem. 2018;124:150–60.

  • 26.

    Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM Mineral control of soil organic carbon storage and turnover. Nature. 1997;389:170–3.

  • 27.

    Poeplau C, Helfrich M, Dechow R, Szoboszlay M, Tebbe CC, Don A, et al. Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biol Biochem. 2019;130:167–76.

  • 28.

    Hestrin R, Lee MR, Whitaker BK, Pett-Ridge J. The switchgrass microbiome: a review of structure, function, and taxonomic distribution. Phytobiomes J. 2020;5:e-ISSN:2471-2906.

  • 29.

    Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015:6;6707.

  • 30.

    Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL Evidence for enhanced N availability during switchgrass establishment and seeding year production following inoculation with rhizosphere endophytes. Arch Agron Soil Sci. 2014;60:1553–63.

  • 31.

    Clark RB, Baligar VC, Zobel RW. Response of mycorrhizal switchgrass to phosphorus fractions in acidic soil. Commun Soil Sci Plant Anal. 2005;36:1337–59.

  • 32.

    Bahulikar RA, Torres-Jerez I, Worley E, Craven K, Udvardi MK. Diversity of nitrogen-fixing bacteria associated with switchgrass in the native tallgrass prairie of Northern Oklahoma. Appl Environ Microbiol. 2014;80:5636–43

  • 33.

    Ghimire SR, Charlton ND, Craven KD. The mycorrhizal fungus, sebacina vermifera, enhances seed germination and biomass production in switchgrass (Panicum virgatum l). Bioenergy Res. 2009;2:51–8.

  • 34.

    Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C. Growth promotion and colonization of switchgrass (Panicum virgatum) cv. alamo by bacterial endophyte burkholderia phytofirmans strain PsJN. Biotechnol Biofuels. 2012;5:37.

  • 35.

    Ghimire SR, Craven KD. Enhancement of switchgrass (Panicum virgatum L.) biomass production under drought conditions by the ectomycorrhizal fungus Sebacina vermifera. Appl Environ Microbiol. 2011;77:19.

  • 36.

    Mulkey VR, Owens VN, Lee DK. Management of switchgrass-dominated conservation reserve program lands for biomass production in South Dakota. Crop Sci. 2006;46:712–20.

  • 37.

    Lee DK, Doolittle JJ, Owens VN. Soil carbon dioxide fluxes in established switchgrass land managed for biomass production. Soil Biol Biochem. 2007;39:178–86.

  • 38.

    Monti A, Barbanti L, Zatta A, Zegada-Lizarazu W. The contribution of switchgrass in reducing GHG emissions. GCB Bioenergy. 2012;4:420–34.

  • 39.

    Robertson GP, Grace PR. Greenhouse gas fluxes in tropical and temperate agriculture: the need for a full-cost accounting of global warming potentials. Environ Dev Sustain. 2004;6:51–63.

  • 40.

    Fritsche UR, Sims REH, Monti A. Direct and indirect land-use competition issues for energy crops and their sustainable production—an overview. Biofuels Bioprod Biorefining. 2010;4:692–704.

  • 41.

    Lange M, Habekost M, Eisenhauer N, Roscher C, Bessler H, Engels C, et al. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland. PLOS ONE. 2014;9:e96182.

  • 42.

    Thakur MP, Milcu A, Manning P, Niklaus PA, Roscher C, Power S, et al. Plant diversity drives soil microbial biomass carbon in grasslands irrespective of global environmental change factors. Glob Chang Biol. 2015;21:4076–85.

  • 43.

    Chen C, Chen HYH, Chen X, Huang Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat Commun. 2019;10:1332.

  • 44.

    Prober SM, Leff JW, Bates ST, Borer ET, Firn J, Harpole WS, et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol Lett. 2015;18:85–95.

  • 45.

    Mao Y, Yannarell AC, Davis SC, Mackie RI. Impact of different bioenergy crops on N-cycling bacterial and archaeal communities in soil. Environ Microbiol. 2013;15:928–42.

  • 46.

    Liang T, Yang G, Ma Y, Yao Q, Ma Y, Ma H, et al. Seasonal dynamics of microbial diversity in the rhizosphere of Ulmus pumila L. var. sabulosa in a steppe desert area of Northern China. PeerJ. 2019;7:e7526.

  • 47.

    Jesus E da C, Liang C, Quensen JF, Susilawati E, Jackson RD, et al. Influence of corn, switchgrass, and prairie cropping systems on soil microbial communities in the upper Midwest of the United States. GCB Bioenergy. 2016;8:481–94.

  • 48.

    Frasier I, Noellemeyer E, Fernández R, Quiroga A. Direct field method for root biomass quantification in agroecosystems. MethodsX. 2016;3:513–9.

  • 49.

    Carter MR, Gregorich EG (Eds.) Soil Sampling and Methods of Analysis. CRC Press; 2007.

  • 50.

    Sheldrick BH, Wang C. Particle-size distribution. In: Carter, MR editor. Soil sampling and methods of analysis, Canadian society of soil science; 1993. p. 499–511.

  • 51.

    McLean, E. Soil pH and lime requirement. Methods of soil analysis. Part 2. Chemical and microbiological properties, American Society of Agronomy, Soil Science Society of America. 1982;

  • 52.

    AOAC Official Method 972.43, Microchemical Determination of Carbon, Hydrogen, and Nitrogen, Automated Method, in Official Methods of Analysis of AOAC International, 16th ed. Chapter 12, pp. 5–6, AOAC International, Arlington, VA; 1997.

  • 53.

    Nelson DW, Sommers LE. Total Carbon, Organic Carbon, and Organic Matter. Chapter 34, p 1001-6. JM Bigham et al. editors. Soil Science Society of America and America Society of Agronomy. Methods of Soil Analysis. Part 3. Chemical Methods-SSA Book Series no. 5. Madison, WI. 1996.

  • 54.

    Sah RN, Miller RO. Spontaneous reaction for acid dissolution of biological tissues in closed vessels. Anal Chem. 1996;64:230–3.

    Article 

    Google Scholar 

  • 55.

    Diamond D. Phosphorus in soil extracts. QuikChem Method 10-115-01-1-A. Lachat instruments, Milwaukee, WI. 1995.

  • 56.

    Olsen SR, Sommers LE. Phosphorus. In: AL Page, et al. (eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties p. 403–30. Agron. Mongr. 9. 2nd edition. ASA and SSA, Madison, WI; 1982.

  • 57.

    Prokopy WR. Phopshorus in 0.5 M sodium bicarbonate soil extracts. Milwaukee, WI: QuikChem Method 12-115-01-1-B. Lachat Instruments; 1995.

    Google Scholar 

  • 58.

    Bowman RA, Moir JO. Basics EDTA as an extractant for soil organic phosphorus. Soil Sci Soc Am J. 1993;57:1516–8.

    CAS 
    Article 

    Google Scholar 

  • 59.

    McKeague J, Day J. Dithionite-and oxalate-extractable Fe and AL as aids in 577 differentiating various classes of soils. Can. J. Soil Sci. 1966;

  • 60.

    Mehra OP and Jackson ML. Iron oxide remobal from soils and clays by a dithionite-citrate system buffered with sodium bicarbonate. In Clays and clay materials (pp. 317–27). Pergamon; 2013.

  • 61.

    Christiansen JR, Outhwaite J, Smukler SM. Comparison of CO2, CH4 and N2O soil-atmosphere exchange measured in static chambers with cavity ring-down spectroscopy and gas chromatography. Agric For Meteorol. 2015;

  • 62.

    Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.

  • 63.

    Wu L, Wen C, Qin Y, Yin H, Tu Q, Van Nostrand JD, et al. Phasing amplicon sequencing on Illumina Miseq for robust environmental microbial community analysis. BMC Microbiol. 2015;15:125.

  • 64.

    Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.

  • 65.

    Kuczynski J, Stombaugh J, Walters WA, González A, Caporaso JG, Knight R. Using QIIME to analyze 16s rRNA gene sequences from microbial communities. Curr Protoc Microbiol. 2012, Chapter 10:Unit 10.7.

  • 66.

    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.

  • 67.

    Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.

  • 68.

    Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.

  • 69.

    Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.

  • 70.

    Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

  • 71.

    Price MN, Dehal PS, Arkin AP. Fasttree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26:1641–50.

  • 72.

    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.

  • 73.

    R Core Team. R Core Team (2014). R: a language and environment for statistical computing. R Found Stat Comput Vienna, Austria 2014. http://wwwR-project.org/.

  • 74.

    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

    Book 

    Google Scholar 

  • 75.

    Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

  • 76.

    Anderson MJ. Distance-based tests for homogeneity of multivariate dispersions. Biometrics. 2006;62:245–53.

  • 77.

    Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48:1–36.

  • 78.

    Dise NB. Methane emission from Minnesota peatlands: spatial and seasonal variability. Glob Biogeochem Cycles. 1993;7:123–42.

  • 79.

    Bartlett KB, Harriss RC. Review and assessment of methane emissions from wetlands. Chemosphere. 1993;26:261–20.

  • 80.

    Abraha M, Gelfand I, Hamilton SK, Chen J, Robertson GP. Carbon debt of field-scale conservation reserve program grasslands converted to annual and perennial bioenergy crops. Environ Res Lett. 2019;14:024019.

  • 81.

    Roley SS, Xue C, Hamilton SK, Tiedje JM, Robertson GP. Isotopic evidence for episodic nitrogen fixation in switchgrass (Panicum virgatum L.). Soil Biol Biochem. 2019;129:90–8.

  • 82.

    Cline LC, Zak DR. Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology. 2015;96:3374–85.

  • 83.

    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A. 2015;112:10967–72.

  • 84.

    Kang H, Fahey TJ, Bae K, Fisk M, Sherman RE, Yanai RD, et al. Response of forest soil respiration to nutrient addition depends on site fertility. Biogeochemistry. 2016;127:113–24.

  • 85.

    Wagai R, Brye KR, Gower ST, Norman JM, Bundy LG. Land use and environmental factors influencing soil surface CO2 flux and microbial biomass in natural and managed ecosystems in southern Wisconsin. Soil Biol Biochem. 1998;30:1501–9.

  • 86.

    Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000–2017. Earth Syst Sci Data Discuss. 2019;12:1561–23.

  • 87.

    Jackson RB, Saunois M, Bousquet P, Canadell JG, Poulter B, Stavert AR, et al. Increasing anthropogenic methane emissions arise equally from agricultural and fossil fuel sources. Environ Res Lett. 2020;15:071002.

  • 88.

    Stocker TF, Qin D, Plattner GK, Tignor MMB, Allen SK, Boschung J, et al. Climate change 2013 the physical science basis: working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Climate change 2013 the physical science basis: working group i contribution to the fifth assessment report of the intergovernmental panel on climate change. 2013.


  • Source: Ecology - nature.com

    Beyond coronavirus: the virus discoveries transforming biology

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans