Fageria N. Yield physiology of rice. J Plant Nutr. 2007;30:843–79.
Google Scholar
Wang Z, Zhang W, Beebout S, Zhang H, Liu L, Yang J, et al. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crops Res. 2016;193:54–69.
Zhang H, Xue Y, Wang Z, Yang J, Zhang J. An alternate wetting and moderate soil drying regime improves root and shoot growth in rice. Crop Sci. 2009;49:2246–60.
Bouman B, Tuong T. Field water management to save water and increase its productivity in irrigated lowland rice. Agr Water Manag. 2001;49:11–30.
Harrison M, Tardieu F, Dong Z, Messina C, Hammer G. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob Change Biol. 2014;20:867–78.
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production. Nature. 2016;529:84–87.
Google Scholar
Thorup-Kristensen K, Kirkegaard J. Root system-based limits to agricultural productivity and efficiency: the farming systems context. Ann Bot. 2016;118:573–92.
Google Scholar
Yao F, Huang J, Cui K, Nie L, Xiang J, Liu X, et al. Agronomic performance of high-yielding rice variety grown under alternate wetting and drying irrigation. Field Crops Res. 2012;126:16–22.
Danin A. Plant adaptations to environmental stresses in desert dunes. In: Danin A (ed). Plants of desert dunes. (Springer, Berlin, 1996), pp 133–152.
Pang J, Ryan M, Siddique K, Simpson R. Unwrapping the rhizosheath. Plant Soil. 2017;418:129–39.
Google Scholar
Marasco R, Mosqueira M, Fusi M, Ramond J, Merlino G, Booth J, et al. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome. 2018;6:215.
Google Scholar
Zhang Y, Du H, Gui Y, Xu F, Liu J, Zhang J, et al. Moderate water stress induces rice rhizosheath formation associated with ABA and auxin responses. J Exp Bot. 2020;71:2740–51.
Google Scholar
Duell R, Peacock G. Rhizosheaths on mesophytic grasses. Crop Sci. 1985;25:880–3.
Ndour P, Gueye M, Barakat M, Ortet P, Bertrand-Huleux M, Pablo A, et al. Pearl millet genetic traits shape rhizobacterial diversity and modulate rhizosphere aggregation. Front Plant Sci. 2017;8:1288.
Google Scholar
Philippot L, Raaijmakers J, Lemanceau P, van der Putten W. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99.
Google Scholar
Ndour P, Heulin T, Achouak W, Laplaze L, Cournac L. The rhizosheath: from desert plants adaptation to crop breeding. Plant Soil. 2020;456:1–13.
Google Scholar
George T, Brown L, Ramsay L, White P, Newton A, Bengough A, et al. Understanding the genetic control and physiological traits associated with rhizosheath production by barley (Hordeum vulgare). N Phytol. 2014;203:195–205.
Google Scholar
Zhang Y, Du H, Xu F, Ding Y, Gui Y, Zhang J, et al. Root-bacterial associations boost rhizosheath formation in moderately dry soil through ethylene responses. Plant Physiol. 2020;183:780–92.
Google Scholar
Basirat M, Mousavi S, Abbaszadeh S, Ebrahimi M, Zarebanadkouki M. The rhizosheath: a potential root trait helping plants to tolerate drought stress. Plant Soil. 2019;445:565–75.
Google Scholar
Othman A, Amer W, Fayez M, Hegazi N. Rhizosheath of sinai desert plants is a potential repository for associative diazotrophs. Microbiol Res. 2004;159:285–93.
Google Scholar
Haling R, Richardson A, Culvenor R, Lambers H, Simpson R. Root morphology, root-hair development and rhizosheath formation on perennial grass seedlings is influenced by soil acidity. Plant Soil. 2010;335:457–68.
Google Scholar
Delhaize E, James R, Ryan P. Aluminium tolerance of root hairs underlies genotypic differences in rhizosheath size of wheat (Triticum aestivum) grown on acid soil. N Phytol.2012;195:609–19.
Google Scholar
Liu T, Ye N, Song T, Cao Y, Gao B, Zhang D, et al. Rhizosheath formation and involvement in foxtail millet (Setaria italica) root growth under drought stress. J Integr Plant Biol. 2019;61:449–62.
Google Scholar
Liu T, Chen M, Zhang Y, Zhu F, Liu Y, Tian Y, et al. Comparative metabolite profiling of two switchgrass ecotypes reveals differences in drought stress responses and rhizosheath weight. Planta. 2019;250:1355–69.
Google Scholar
Brown L, George T, Neugebauer K, White P. The rhizosheath–a potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant Soil. 2017;418:115–28.
Google Scholar
Sirrenberg A, Göbel C, Grond S, Czempinski N, Ratzinger A, Karlovsky P, et al. Piriformospora indica affects plant growth by auxin production. Physiol Plant. 2007;131:581–9.
Google Scholar
Weiβ M, Waller F, Zuccaro A, Selosse M. Sebacinales-one thousand and one interactions with land plants. N Phytol. 2016;211:20–40.
Vadassery J, Ranf S, Drzewiecki C, Mithoer A, Mazars C, Scheel D, et al. A cell wall extract from the endophytic fungus Piriformospora indica promotes growth of Arabidopsis seedlings and induces intracellular calcium elevation in roots. Plant J. 2009;59:193–206.
Google Scholar
Lee Y, Johnson J, Chien C, Sun C, Cai D, Lou B, et al. Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact. 2011;24:421–31.
Google Scholar
Dong S, Tian Z, Chen P, Senthil Kumar R, Shen C, Cai D, et al. The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot. 2013;64:4529–40.
Google Scholar
Rani M, Raj S, Dayaman V, Kumar M, Dua M, Johri A. Functional characterization of a hexose transporter from root endophyte Piriformospora indica. Front Microbiol. 2016;7:1083.
Google Scholar
Prasad D, Verma N, Bakshi M, Narayan O, Singh A, Dua M, et al. Functional characterization of a magnesium transporter of root endophytic fungus Piriformospora indica. Front Microbiol. 2018;9:3231.
Google Scholar
Narayan O, Verma N, Jogawat A, Dua M, Johri A. Sulfur transfer from the endophytic fungus Serendipita indica improves maize growth and requires the sulfate transporter SiSulT. Plant Cell. 2021;33:1268–85.
Google Scholar
Baltruschat H, Fodor J, Harrach B, Niemcayk E, Barna B, Gullner G, et al. Salt tolerance of barley induced by the root endophyte Piriformospora indica is associated with a strong increase in antioxidants. N Phytol. 2008;180:501–10.
Google Scholar
Jogawat A, Saha S, Bakshi M, Dayaman V, Kumar M, Dua M, et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress. Plant Signal Behav. 2013;8:e26891.
Google Scholar
Fakhro A, Andrade-Linares D, von Bargen S, Bandte M, Buttner C, Grosch R. Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza. 2010;20:191–200.
Google Scholar
Sarma M, Kumar V, Saharan K, Srivastava R, Sharma A, Prakash A, et al. Application of inorganic carrier-based formulations of fluorescent pseudomonads and Piriformospora indica on tomato plants and evaluation of their efficacy. J Appl Microbiol. 2011;111:456–66.
Google Scholar
Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, et al. The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahliae infection by downregulation plant defense responses. BMC Plant Biol. 2014;14:268.
Google Scholar
Abdelaziz M, Abdelsattar M, Abdeldaym E, Atia M, Mahmoud A, Saad M, et al. Piformospora indica alters Na+/K+ homeostasis, antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress. Sci Hortic. 2019;256:108532.
Google Scholar
Zhang W, Wang J, Xu L, Wang A, Huang L, Du H, et al. Drought stress responses in maize are diminished by Piriformospora indica. Plant Signal Behav. 2017;13:e1414121.
Google Scholar
Pion M, Spangenberg J, Simon A, Bindschedler S, Flury C, Chatelain A, et al. Bacterial farming by the fungus Morchella crassipes. Proc R Soc B. 2013;280:20132242.
Google Scholar
Guhr A, Borken W, Spohn M, Matzner E. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization. Proc Natl Acad Sci USA. 2015;112:14647–51.
Google Scholar
Warmink J, Nazir R, van Elsas J. Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol. 2009;11:300–12.
Google Scholar
Nazir R, Warmink J, Boersma H, van Elsas J. Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol. 2010;71:169–85.
Google Scholar
Wang L, Guo M, Li Y, Ruan W, Mo X, Wu Z, et al. LARGE ROOT ANGLE1, encoding OsPIN2, is involved in root system architecture in rice. J Exp Bot. 2018;69:385–97.
Google Scholar
Bütehorn B, Rhody D, Franken P. Isolation and characterization of Pitef1 encoding the translation elongation factor EF-1α of the root endophyte Piriformospora indica. Plant Biol. 2008;2:687–92.
Haling R, Brown L, Bengough A, Young I, Hallett P, White P, et al. Root hairs improve root penetration, root-soil contact, and phosphorus acquisition in soils of different strength. J Exp Bot. 2013;64:3711–21.
Google Scholar
Hou M, Luo F, Wu D, Zhang X, Lou M, Shen D, et al. OsPIN9, an auxin efflux carrier, is required for the regulation of rice tiller bud outgrowth by ammonium. N Phytol 2021;229:935–49.
Google Scholar
Yuan J, Ruan Y, Wang B, Zhang J, Waseem R, Huang Q, et al. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants. J Agr Food Chem. 2013;61:3774–80.
Google Scholar
Xu F, Wang K, Yuan W, Xu W, Liu S, Kronzucker H, et al. Overexpression of aquaporin OsPIP1;2 in rice improves yield by enhancing mesophyll CO2 conductance and phloem sucrose transport. J Exp Bot. 2019;70:671–81.
Google Scholar
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature. 2012;488:91–95.
Google Scholar
Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, et al. A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS One. 2012;7:e48479.
Google Scholar
Bodenhausen N, Horton M, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One. 2013;8:e56329.
Google Scholar
Schlaeppi K, Dombrowski N, Oter R, Themaat E, Schulze-Lefert P. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2014;111:585–92.
Google Scholar
Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 2020;14:1915–28.
Google Scholar
Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
Google Scholar
Edgar R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.
Google Scholar
Edgar R. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Google Scholar
Wang Q, Garrity G, Tiedje J, Cole J. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73:5261–7.
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Google Scholar
Schloss P, Westcott S, Ryabin T, Hall J, Hartmann M, Hollister E, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb. 2009;75:7537–41.
Google Scholar
Wang B, Yuan J, Zhang J, Shen Z, Zhang M, Li R, et al. Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biol Fertil Soils. 2013;49:435–46.
Turner J, Backman P. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 1991;75:347–53.
Wei Z, Gu Y, Friman V, Kowalchuk G, Xu Y, Shen Q, et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci Adv. 2019;5:eaaw0759.
Google Scholar
Zhang W, Li X, Sun K, Tang M, Xu F, Zhang M, et al. Mycelial network-mediated rhizobial dispersal enhances legume nodulation. ISME J. 2020;14:1015–29.
Google Scholar
Mela F, Fritsche K, de Boer W, van Veen J, de Graaff L, van den Berg M, et al. Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J. 2011;5:1494–504.
Google Scholar
Berendsen R, Vismans G, Yu K, Song Y, de Jonge R, Burgman W, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 2018;12:1496–507.
Google Scholar
Zhang J, Liu Y, Zhang N, Hu B, Jin T, Xu H, et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol. 2019;37:676–84.
Google Scholar
Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fischer M, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proc Natl Acad Sci USA. 2005;102:13386–91.
Google Scholar
Chen T, Nomura K, Wang X, Sohrabi R, Xu J, Yao L, et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature. 2020;580:653–7.
Google Scholar
Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis M, et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol. 2015;17:316–31.
Google Scholar
Preece C, Peñuelas J. Rhizodeposition under drought and consequences for soil communities and ecosystem resilience. Plant Soil. 2016;409:1–17.
Google Scholar
Bezzate S, Aymerich S, Chambert R, Czarnes S, Berge O, Heulin T. Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environ Microbiol. 2000;2:333–42.
Google Scholar
Alami Y, Achouak W, Marol C, Heulin T. Rhizosphere soil aggregation and plant growth promotion of sunflowers by an exopolysaccharide-producing Rhizobium sp. strain isolated from sunflower roots. Appl Environ Microbiol. 2000;66:3393–8.
Google Scholar
Berge O, Lodhi A, Brandelet G, Santaella C, Roncato M, Christen R, et al. Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol. 2009;59:367–72.
Google Scholar
Moreno-Espíndola I, Rivera-Becerril F, de Jesús F-GM, De León-González F. Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem. 2007;39:2520–6.
Watt M, Mccully M, Canny M. Formation and stabilization of rhizosheaths of Zea mays L. (effect of soil water content). Plant Physiol. 1994;106:179–86.
Google Scholar
Schafer P, Pfiffi S, Voll L, Zajic D, Chandler P, Waller F, et al. Manipulation of plant innate immunity and gibberellin as factor of compatibility in the mutualistic association of barley roots with Piriformospora indica. Plant J. 2009;59:461–74.
Google Scholar
Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, et al. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress. N Phytol. 2013;197:139–50.
Google Scholar
Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet. 2013;45:1097–102.
Google Scholar
Luschnig C, Gaxiola R, Grisafi P, Fink G. EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev. 1998;12:2175–87.
Google Scholar
Müller A, Guan C, Gälweiler L, Tänzler P, Huijser P, Marchant A, et al. AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J. 1998;17:6903–11.
Google Scholar
de Boer W, Folman R, Summerbell R, Boddy L. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev. 2005;29:795–811.
Google Scholar
Hogan D, Kolter R. Pseudomonas-Candida interactions: an ecological role for virulence factors. Science. 2002;296:2229–32.
Google Scholar
Ravnskov S, Nybroe O, Jakobsen I. Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. N Phytol. 1999;142:113–22.
Torsvik V, Øvreas L, Thingstad T. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science. 2002;296:1064–6.
Google Scholar
Wamberg C, Christensen S, Jakobsen I, Müller A, Sørensen S. The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem. 2003;35:1349–57.
Google Scholar
van Hees P, Rosling A, Essen S, Godbold D, Jones D, Finlay R. Oxalate and ferricrocin exudation by the extrametrical mycelium of an ectomycorrhizal fungus in symbiosis with Pinus sylvestris. N Phytol. 2006;169:367–78.
Source: Ecology - nature.com