in

Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres

  • 1.

    Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1719588115 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 3.

    Gibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: A synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).

    Article 

    Google Scholar 

  • 4.

    Mitchell, R. L. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 1–15 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Field, K. J. et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J. 10, 1514–1526 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Edwards, D., Cherns, L. & Raven, J. A. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology 58, 803–837 (2015).

    Article 

    Google Scholar 

  • 11.

    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the mojave desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 12.

    Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).

    Google Scholar 

  • 13.

    Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated soils. Geobiology 00, 1–15 (2021).

    Google Scholar 

  • 14.

    Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B Biol. Sci. 367, 519–536 (2012).

    Article 

    Google Scholar 

  • 15.

    Strullu-Derrien, C., Wawrzyniak, Z., Goral, T. & Kenrick, P. Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-Myr-old Rhynie Chert (Scotland, UK). Bot. J. Linn. Soc. 179, 201–213 (2015).

    Article 

    Google Scholar 

  • 16.

    Krings, M., Kerp, H., Hass, H., Taylor, T. N. & Dotzler, N. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Rev. Palaeobot. Palynol. 146, 265–276 (2007).

    Article 

    Google Scholar 

  • 17.

    Remy, W., Taylort, T. N., Hass, H. & Kerp, H. Four Hundred-million-year-old Vesicular Arbuscular Mycorrhizae (Endomycorrhiae/symbiosis/fossil fungi/mutualims). Proc. Natl. Acad. Sci. United States Am. 91, 11841–11843 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Field, K. J. et al. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat. Commun. 3, 1–8 (2012).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    Mills, B. J. W., Batterman, S. A. & Field, K. J. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Phil. Trans. R. Soc. B 373, 20160503 (2017).

  • 21.

    Mitchell, R. L., Strullu-Derrien, C. & Kenrick, P. Biologically mediated weathering in modern cryptogamic ground covers and the early paleozoic fossil record. J. Geol. Soc. London. 176, 430–439 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Furnes, H. et al. Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156–176 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 23.

    Smits, M. M. et al. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 37, 615–618 (2009).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Bonneville, S. et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 25.

    McLoughlin, N. Fungal origins?. Nat. Ecol. Evol. 1, 1–2 (2017).

    Article 

    Google Scholar 

  • 26.

    Ivarsson, M. et al. Intricate tunnels in garnets from soils and river sediments in Thailand-Possible endolithic microborings. PLoS ONE 13, 0200351 (2018).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Hoffland, E. et al. The role of fungi in weathering. Front. Ecol. Environ. 2, 258–264 (2004).

    Article 

    Google Scholar 

  • 28.

    McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K. & Staudigel, H. Ichnotaxonomy of microbial trace fossils in volcanic glass. J. Geol. Soc. London. 166, 159–169 (2009).

    Article 

    Google Scholar 

  • 29.

    Berner, R. A. & Cochran, M. F. Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723–726 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 30.

    Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248–254 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Van Schöll, L. et al. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 303, 35–47 (2008).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Quirk, J. et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8, 1006–1011 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Daly, M. et al. A multi-scale correlative investigation of ductile fracture. Acta Mater. 130, 56–68 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 34.

    Gelb, J., Finegan, D. P., Brett, D. J. L. & Shearing, P. R. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy. J. Power Sour. 357, 77–86 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Slater, T. J. A. et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel. Sci. Rep. 7, 1–10 (2017).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Burnett, T. L. & Withers, P. J. Completing the picture through correlative characterization. Nat. Mater. 18, 1041–1049 (2019).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Mitchell, R. L. et al. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: correlative imaging, biological form and function, and bioinspiration. J. R. Soc. Interface 16, 20190218 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Bradley, R. S. & Withers, P. J. Correlative multiscale tomography of biological materials. MRS Bull. 41, 549–556 (2016).

    ADS 
    Article 

    Google Scholar 

  • 39.

    Ferstl, S. et al. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci. Rep. 10, 1–12 (2020).

    Article 
    CAS 

    Google Scholar 

  • 40.

    O’Sullivan, J. D. B., Cruickshank, S. M., Starborg, T., Withers, P. J. & Else, K. J. Characterisation of cuticular inflation development and ultrastructure in Trichuris muris using correlative X-ray computed tomography and electron microscopy. Sci. Rep. 10, 1–9 (2020).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Goral, J., Walton, I., Andrew, M. & Deo, M. Pore system characterization of organic-rich shales using nanoscale- resolution 3D imaging. Fuel 258, 116049 (2019).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Andrew, M. Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles. Geol. Soc. Lond. Spec. Publ. 484, 4844 (2018).

    Google Scholar 

  • 43.

    Ma, L. et al. Correlative multi-scale imaging of shales: a review and future perspectives. Geol. Soc. Lond. Spec. Publ. 454, 175–199 (2017).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 45.

    Bandara, C. D. et al. High-Resolution Chemical Mapping and Microbial Identification of Rhizosphere using Correlative Microscopy. bioRxiv 1–26 (2021).

  • 46.

    Spruzeniece, L., Piazolo, S., Daczko, N. R., Kilburn, M. R. & Putnis, A. Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J. Metamorph. Geol. 35, 281–299 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 47.

    Stefánsson, A. et al. Major impact of volcanic gases on the chemical composition of precipitation in Iceland during the 2014–2015 Holuhraun eruption. J. Geophys. Res. Atmos. Geophys. Res. Atmos. 122, 1971–1982 (2017).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 48.

    Gadd, G. M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 49.

    Jongmans, A. G. et al. Rock-eating fungi. 389, 682–683 (1997).

    CAS 

    Google Scholar 

  • 50.

    Gadd, G. M. Fungi, rocks, and minerals. Elements 13, 171–176 (2017).

    Article 

    Google Scholar 

  • 51.

    Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegredation 46, 343–368 (2000).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Burghelea, C. et al. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124, 187–203 (2015).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Mcloughlin, N., Staudigel, H., Furnes, H., Eickmann, B. & Ivarsson, M. Mechanisms of microtunneling in rock substrates: Distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8, 245–255 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Hoffland, E., Giesler, R., Jongmans, T. & Van Breemen, N. Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5, 11–22 (2002).

    Article 

    Google Scholar 

  • 55.

    Wierzchos, J. & delos Ríos A, Ascaso C, ,. Microorganisms in desert rocks: The edge of life on Earth. Int. Microbiol. 15, 173–183 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Ascaso, C. & Wierzchos, J. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int. Microbiol. 5, 215–222 (2003).

    Google Scholar 

  • 57.

    Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (Tepuis) of Venezuela. Geomicrobiol. J. 18, 117–132 (2001).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Adamo, P. & Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 16, 229–256 (2000).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Oggerin, M., Tornos, F., Rodriguez, N., Pascual, L. & Amils, R. Fungal iron biomineralization in Río Tinto. Minerals 6, 37 (2016).

    Article 
    CAS 

    Google Scholar 

  • 60.

    Akhtar, M. E. & Kelso, W. I. Electron microscopic characterisation of iron and manganese oxide/hydroxide precipitates from agricultural field drains 1. Biol. Fertil. Soils 16, 305–312 (1993).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Gadd, G. M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl. Acad. Sci. U. S. A. 116, 26394–26401 (2019).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 63.

    Dorn, R. I., Mahaney, W. C. & Krinsley, D. H. Case hardening: turning weathering rinds into protective shells. Elements 13, 165–169 (2017).

    Article 

    Google Scholar 

  • 64.

    Schreiber, H. D. Experimental studies of nickel and chromium partitioning into olivine from synthetic basaltic melts. in Lunar and Planetary Science Conference, 10th, Houston, Texas, Proceedings Volume 1 509–516 (1979).

  • 65.

    Burford, E. P., Kierans, M. & Gadd, G. M. Geomycology: Fungi in mineral substrata. Mycologist 17, 98–107 (2003).

    Article 

    Google Scholar 

  • 66.

    Dorn, R. I., Gordon, S. J., Krinsley, D. & Langworthy, K. Nanoscale: Mineral Weathering Boundary. In: Treatise on Geomorphology (eds. Shroder, J., Pope, G. A.), vol. 4, 44–69 (2013).

  • 67.

    Smits, M. Mineral tunneling by fungi. in Fungi in Biogeochemical cycles (ed. Gadd, G. M.) 311–327 (Cambridge University Press, 2006).

  • 68.

    Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 69.

    Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 70.

    Arocena, J. M., Zhu, L. P. & Hall, K. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau China. Earth Surf. Process. Landforms 28, 1429–1437 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 71.

    Krumbein, W. E. & Jens, K. Biogenic rock varnishes of the Negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50, 25–38 (1981).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 72.

    Gadd, G. M. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11, 297–316 (1993).

    CAS 
    Article 

    Google Scholar 

  • 73.

    Mitchell, R. L. et al. What lies beneath: 3d vs 2d correlative imaging challenges and how to overcome them. Microsc. Microanal. 25, 416–417 (2019).

    Article 

    Google Scholar 

  • 74.

    Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).

    ADS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Imagining the distant past — and finding keys to the future

    Salmon going viral