Inshakova, E. & Inshakova, A. Nanomaterials and nanotechnology: prospects for technological re-equipment in the power engineering industry. IOP Conference Series: Materials Science and Engineering 709, 033020. https://doi.org/10.1088/1757-899x/709/3/033020 (2020).
Google Scholar
Grassian, V. H. When size reallymatters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments. J. Phys. Chem. C 112, 18303–18313. https://doi.org/10.1021/jp806073t (2008).
Google Scholar
Jayathilaka, W. et al. Significance of nanomaterials in wearables: a review on wearable actuators and sensors. Adv. Mater. 31, e1805921. https://doi.org/10.1002/adma.201805921 (2019).
Google Scholar
Pokhrel, S. & Mädler, L. Flame made particles for sensors, catalysis and energy storage applications. Energy Fuels https://doi.org/10.1021/acs.energyfuels.0c02220 (2020).
Google Scholar
Anthony, L. S., Perumal, V., Mohamed, N. M., Saheed, M. S. M. & Gopinath, S. C. B. in Nanomaterials for Healthcare, Energy and Environment Advanced Structured Materials Ch. Chapter 3, 51–69 (2019).
Sharma, N., Ojha, H., Bharadwaj, A., Pathak, D. P. & Sharma, R. K. Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403. https://doi.org/10.1039/c5ra06778b (2015).
Google Scholar
Xin, Y. et al. High-entropy alloys as a platform for catalysis: progress, challenges, and opportunities. ACS Catal. 10, 11280–11306. https://doi.org/10.1021/acscatal.0c03617 (2020).
Google Scholar
Wu, W. Inorganic nanomaterials for printed electronics: a review. Nanoscale 9, 7342–7372. https://doi.org/10.1039/c7nr01604b (2017).
Google Scholar
Abdalla, A. M. et al. Nanomaterials for solid oxide fuel cells: a review. Renew. Sustain. Energy Rev. 82, 353–368. https://doi.org/10.1016/j.rser.2017.09.046 (2018).
Google Scholar
Choudhary, N. et al. Asymmetric supercapacitor electrodes and devices. Adv. Mater. https://doi.org/10.1002/adma.201605336 (2017).
Google Scholar
Yu, Z., Tetard, L., Zhai, L. & Thomas, J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730. https://doi.org/10.1039/c4ee03229b (2015).
Google Scholar
Das, S., Sen, B. & Debnath, N. Recent trends in nanomaterials applications in environmental monitoring and remediation. Environ. Sci. Pollut. Res. Int. 22, 18333–18344. https://doi.org/10.1007/s11356-015-5491-6 (2015).
Google Scholar
Santhosh, C. et al. Role of nanomaterials in water treatment applications: a review. Chem. Eng. J. 306, 1116–1137. https://doi.org/10.1016/j.cej.2016.08.053 (2016).
Google Scholar
Riley, M. K. & Vermerris, W. Recent advances in nanomaterials for gene delivery-a review. Nanomater. (Basel) https://doi.org/10.3390/nano7050094 (2017).
Google Scholar
Dasari Shareena, T. P., McShan, D., Dasmahapatra, A. K. & Tchounwou, P. B. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nanomicro Lett. https://doi.org/10.1007/s40820-018-0206-4 (2018).
Google Scholar
Jeyaraj, M., Gurunathan, S., Qasim, M., Kang, M. H. & Kim, J. H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomater. (Basel) https://doi.org/10.3390/nano9121719 (2019).
Google Scholar
Abazari, S., Shamsipur, A., Bakhsheshi-Rad, H. R., Ramakrishna, S. & Berto, F. Graphene family nanomaterial reinforced magnesium-based matrix composites for biomedical application: a comprehensive review. Metals https://doi.org/10.3390/met10081002 (2020).
Google Scholar
Siddique, S. & Chow, J. C. L. Application of nanomaterials in biomedical imaging and cancer therapy. Nanomater. (Basel) https://doi.org/10.3390/nano10091700 (2020).
Google Scholar
Mayakrishnan, G., Elayappan, V., Kim, I. S. & Chung, I. M. Sea-island-like morphology of cuni bimetallic nanoparticles uniformly anchored on single layer graphene oxide as a highly efficient and noble-metal-free catalyst for cyanation of aryl halides. Sci. Rep. 10, 677. https://doi.org/10.1038/s41598-020-57483-z (2020).
Google Scholar
Sheikh-Mohseni, M. A., Hassanzadeh, V. & Habibi, B. Reduced graphene oxide supported bimetallic Ni–Co nanoparticles composite as an electrocatalyst for oxidation of methanol. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.106022 (2019).
Google Scholar
Khort, A., Romanovski, V., Leybo, D. & Moskovskikh, D. CO oxidation and organic dyes degradation over graphene–Cu and graphene–CuNi catalysts obtained by solution combustion synthesis. Sci. Rep. https://doi.org/10.1038/s41598-020-72872-0 (2020).
Google Scholar
Wang, D. et al. Nickel-cobalt layered double hydroxide nanosheets with reduced graphene oxide grown on carbon cloth for symmetric supercapacitor. Appl. Surf. Sci. 483, 593–600. https://doi.org/10.1016/j.apsusc.2019.03.345 (2019).
Google Scholar
Khort, A. et al. Graphene@metal nanocomposites by solution combustion synthesis. Inorg. Chem. https://doi.org/10.1021/acs.inorgchem.0c00673 (2020).
Google Scholar
Xu, L. et al. The crucial role of environmental coronas in determining the biological effects of engineered nanomaterials. Small https://doi.org/10.1002/smll.202003691 (2020).
Google Scholar
Wang, X., Odnevall Wallinder, I. & Hedberg, Y. Bioaccessibility of nickel and cobalt released from occupationally relevant alloy and metal powders at simulated human exposure scenarios. Ann. Work Expo. Health https://doi.org/10.1093/annweh/wxaa042 (2020).
Google Scholar
Atapour, M., Wang, X., Färnlund, K., Odnevall Wallinder, I. & Hedberg, Y. Corrosion and metal release investigations of selective laser melted 316L stainless steel in a synthetic physiological fluid containing proteins and in diluted hydrochloric acid. Electrochim. Acta 354, 136748. https://doi.org/10.1016/j.electacta.2020.136748 (2020).
Google Scholar
Mei, N., Hedberg, J., Odnevall Wallinder, I. & Blomberg, E. Influence of biocorona formation on the transformation and dissolution of cobalt nanoparticles under physiological conditions. ACS Omega 4, 21778–21791. https://doi.org/10.1021/acsomega.9b02641 (2019).
Google Scholar
Ekvall, M. T., Hedberg, J., Odnevall Wallinder, I., Hansson, L. A. & Cedervall, T. Long-term effects of tungsten carbide (WC) nanoparticles in pelagic and benthic aquatic ecosystems. Nanotoxicology 12, 79–89. https://doi.org/10.1080/17435390.2017.1421274 (2018).
Google Scholar
Hedberg, J., Ekvall, M. T., Hansson, L.-A., Cedervall, T. & Odnevall Wallinder, I. Tungsten carbide nanoparticles in simulated surface water with natural organic matter: dissolution, agglomeration, sedimentation and interaction with Daphnia magna. Environ. Sci. Nano 4, 886–894. https://doi.org/10.1039/c6en00645k (2017).
Google Scholar
Hedberg, J., Blomberg, E. & Odnevall Wallinder, I. In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ. Sci. Technol. 53, 4030–4044. https://doi.org/10.1021/acs.est.8b05012 (2019).
Google Scholar
Cappellini, F. et al. Mechanistic insight into reactivity and (geno)toxicity of well-characterized nanoparticles of cobalt metal and oxides. Nanotoxicology 12, 602–620. https://doi.org/10.1080/17435390.2018.1470694 (2018).
Google Scholar
Varma, A., Mukasyan, A. S., Rogachev, A. S. & Manukyan, K. V. Solution combustion synthesis of nanoscale materials. Chem Rev 116, 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279 (2016).
Google Scholar
Khort, A., Podbolotov, K., Serrano-García, R. & Gunko, Y. One-step solution combustion synthesis of pure Ni nanopowders with enhanced coercivity: the fuel effect. J. Solid State Chem. https://doi.org/10.1016/j.jssc.2017.05.043 (2017).
Google Scholar
Podbolotov, K. B. et al. Solution combustion synthesis of copper nanopowders: the fuel effect. Combust. Sci. Technol. 189, 1878–1890. https://doi.org/10.1080/00102202.2017.1334646 (2017).
Google Scholar
Khort, A., Podbolotov, K., Serrano-Garcia, R. & Gun’ko, Y. One-step solution combustion synthesis of cobalt nanopowder in air atmosphere: the fuel effect. Inorg. Chem. 57, 1464–1473. https://doi.org/10.1021/acs.inorgchem.7b02848 (2018).
Google Scholar
Yermekova, Z., Roslyakov, S. I., Kovalev, D. Y., Danghyan, V. & Mukasyan, A. S. One-step synthesis of pure γ-FeNi alloy by reactive sol–gel combustion route: mechanism and properties. J. Sol-Gel Sci. Technol. https://doi.org/10.1007/s10971-020-05252-9 (2020).
Google Scholar
Khort, A. A. & Podbolotov, K. B. Preparation of BaTiO3 nanopowders by the solution combustion method. Ceram. Int. 42, 15343–15348. https://doi.org/10.1016/j.ceramint.2016.06.178 (2016).
Google Scholar
Xiang, H.-Z., Xie, H.-X., Mao, A., Jia, Y.-G. & Si, T.-Z. Facile preparation of single phase high-entropy oxide nanocrystalline powders by solution combustion synthesis. Int. J. Mater. Res. https://doi.org/10.3139/146.111874 (2020).
Google Scholar
Mukasyan, A. S., Rogachev, A. S. & Aruna, S. T. Combustion synthesis in nanostructured reactive systems. Adv. Powder Technol. 26, 954–976. https://doi.org/10.1016/j.apt.2015.03.013 (2015).
Google Scholar
Pradhan, S. et al. Influence of humic acid and dihydroxy benzoic acid on the agglomeration, adsorption, sedimentation and dissolution of copper, manganese, aluminum and silica nanoparticles—a tentative exposure scenario. PLoS ONE 13, e0192553. https://doi.org/10.1371/journal.pone.0192553 (2018).
Google Scholar
Pradhan, S., Hedberg, J., Blomberg, E., Wold, S. & Odnevall Wallinder, I. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles. J. Nanopart. Res. 18, 285. https://doi.org/10.1007/s11051-016-3597-5 (2016).
Google Scholar
Malloy, A. & Carr, B. NanoParticle tracking analysis—the haloTM system. Part. Part. Syst. Charact. 23, 197–204. https://doi.org/10.1002/ppsc.200601031 (2006).
Google Scholar
Patil, K. C., Hegde, M. S., Rattan, T. & Aruna, S. T. Chemistry of Nanocrystalline Oxide Materials. Combustion Synthesis, Properties and Applications (World Scientific Publishing Co. Pte. Ltd., 2008).
Sdobnyakov, N. et al. Solution combustion synthesis and Monte Carlo simulation of the formation of CuNi integrated nanoparticles. Comput. Mater. Sci. 184, 109936. https://doi.org/10.1016/j.commatsci.2020.109936 (2020).
Google Scholar
Niu, B. et al. Sol-gel autocombustion synthesis of nanocrystalline high-entropy alloys. Sci. Rep. 7, 3421. https://doi.org/10.1038/s41598-017-03644-6 (2017).
Google Scholar
Cheng, M. et al. Core@shell CoO@Co 3 O 4 nanocrystals assembling mesoporous microspheres for high performance asymmetric supercapacitors. Chem. Eng. J. 327, 100–108. https://doi.org/10.1016/j.cej.2017.06.042 (2017).
Google Scholar
Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 (2011).
Google Scholar
Dubey, P., Kaurav, N., Devan, R. S., Okram, G. S. & Kuo, Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 8, 5882–5890. https://doi.org/10.1039/c8ra00157j (2018).
Google Scholar
Preda, I. et al. Surface contributions to the XPS spectra of nanostructured NiO deposited on HOPG. Surf. Sci. 606, 1426–1430. https://doi.org/10.1016/j.susc.2012.05.005 (2012).
Google Scholar
Lynch, I., Dawson, K. A., Lead, J. R. & Valsami-Jones, E. In Nanoscience and the Environment Vol. 7 (eds Jamie R. Lead & Eugenia Valsami-Jones) Ch. 4, 127–156 (Elsiver, 2014).
Lefevre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 107, 109–123. https://doi.org/10.1016/j.cis.2003.11.002 (2004).
Google Scholar
Hay, M. B. & Myneni, S. C. B. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta 71, 3518–3532. https://doi.org/10.1016/j.gca.2007.03.038 (2007).
Google Scholar
Mudunkotuwa, I. A. & Grassian, V. H. Biological and environmental media control oxide nanoparticle surface composition: the roles of biological components (proteins and amino acids), inorganic oxyanions and humic acid. Environ. Sci. Nano 2, 429–439. https://doi.org/10.1039/c4en00215f (2015).
Google Scholar
Li, H. et al. The gas-phase formation of tin dioxide nanoparticles in single droplet combustion and flame spray pyrolysis. Combust. Flame 215, 389–400. https://doi.org/10.1016/j.combustflame.2020.02.004 (2020).
Google Scholar
Xu, C. et al. One-step solution combustion synthesis of CuO/Cu2O/C anode for long cycle life Li-ion batteries. Carbon 142, 51–59. https://doi.org/10.1016/j.carbon.2018.10.016 (2019).
Google Scholar
Trusov, G. V. et al. Spray solution combustion synthesis of metallic hollow microspheres. J. Phys. Chem. C 120, 7165–7171. https://doi.org/10.1021/acs.jpcc.6b00788 (2016).
Google Scholar
Hedberg, Y. S. & Odnevall Wallinder, I. Metal release from stainless steel in biological environments: a review. Biointerphases 11, 018901. https://doi.org/10.1116/1.4934628 (2015).
Google Scholar
Dale, A. L., Lowry, G. V. & Casman, E. A. Accurate and fast numerical algorithms for tracking particle size distributions during nanoparticle aggregation and dissolution. Environ. Sci. Nano 4, 89–104. https://doi.org/10.1039/c6en00330c (2017).
Google Scholar
He, D., Bligh, M. W. & Waite, T. D. Effects of aggregate structure on the dissolution kinetics of citrate-stabilized silver nanoparticles. Environ. Sci. Technol. 47, 9148–9156. https://doi.org/10.1021/es400391a (2013).
Google Scholar
Korshin, G. V., Perry, S. A. L. & Ferguson, J. F. Influence of NOM on copper corrosion. J. Am. Water Works Assoc. 88, 36–47. https://doi.org/10.1002/j.1551-8833.1996.tb06583.x (1996).
Google Scholar
Sarker, P. et al. High-entropy high-hardness metal carbides discovered by entropy descriptors. Nat. Commun. 9, 4980. https://doi.org/10.1038/s41467-018-07160-7 (2018).
Google Scholar
Pei, Z., Yin, J., Hawk, J. A., Alman, D. E. & Gao, M. C. Machine-learning informed prediction of high-entropy solid solution formation: beyond the Hume-Rothery rules. npj Comput. Mater. https://doi.org/10.1038/s41524-020-0308-7 (2020).
Google Scholar
Balasubramanian, K., Khare, S. V. & Gall, D. Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides. Acta Mater. 152, 175–185. https://doi.org/10.1016/j.actamat.2018.04.033 (2018).
Google Scholar
Moskovskikh, D. et al. Extremely hard and tough high entropy nitride ceramics. Sci. Rep. 10, 19874. https://doi.org/10.1038/s41598-020-76945-y (2020).
Google Scholar
Sangiovanni, D. G., Hultman, L. & Chirita, V. Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration. Acta Mater. 59, 2121–2134. https://doi.org/10.1016/j.actamat.2010.12.013 (2011).
Google Scholar
Source: Ecology - nature.com