in

Cost-effective surveillance of invasive species using info-gap theory

[adace-ad id="91168"]
  • 1.

    Jenkins, P. T. Free trade and exotic species introductions. Conserv. Biol. 10, 300–302 (1996).

    Article 

    Google Scholar 

  • 2.

    Sharov, A. A. Bioeconomics of managing the spread of exotic pest species with barrier zones. Risk Anal. 24, 879–892 (2004).

    Article 

    Google Scholar 

  • 3.

    Lodge, D. M. et al. Biological invasions: Recommendations for U.S. policy and management. Ecol. Appl. 16, 2035–2054 (2006).

    Article 

    Google Scholar 

  • 4.

    Yemshanov, D. et al. Optimizing surveillance strategies for early detection of invasive alien species. Ecol. Econ. 162, 87–99 (2019).

    Article 

    Google Scholar 

  • 5.

    Hauser, C. E. & Mccarthy, M. A. Streamlining “search and destroy”: Cost-effective surveillance for invasive species management. Ecol. Lett. 12, 683–692 (2009).

    Article 

    Google Scholar 

  • 6.

    Gottwald, T. R., da Graça, J. V. & Bassanezi, R. B. Citrus Huanglongbing: The pathogen and its impact. Plant Health Prog. https://doi.org/10.1094/PHP-2007-0906-01-RV (2007).

    Article 

    Google Scholar 

  • 7.

    Anderson, D. P. et al. Bio-economic optimisation of surveillance to confirm broadscale eradications of invasive pests and diseases. Biol. Invasions 19, 2869–2884 (2017).

    Article 

    Google Scholar 

  • 8.

    Russell, J. C., Binnie, H. R., Oh, J., Anderson, D. P. & Samaniego-Herrera, A. Optimizing confirmation of invasive species eradication with rapid eradication assessment. J. Appl. Ecol. 54, 160–169 (2017).

    Article 

    Google Scholar 

  • 9.

    Moffitt, L. J., Stranlund, J. K. & Osteen, C. D. Robust detection protocols for uncertain introductions of invasive species. J. Environ. Manag. 89, 293–299 (2008).

    Article 

    Google Scholar 

  • 10.

    Knight, F. H. Risk, Uncertainty, and Profit (Houghton Mifflin Company, 1921).

  • 11.

    Ben-Haim, Y. Uncertainty, probability and information-gaps. Reliab. Eng. Syst. Saf. 85, 249–266 (2004).

    Article 

    Google Scholar 

  • 12.

    Johnson, D. R. & Geldner, N. B. Contemporary decision methods for agricultural, environmental, and resource management and policy. Annu. Rev. Resour. Econ. 11, 19–41 (2019).

    Article 

    Google Scholar 

  • 13.

    Baker, C. M. & Bode, M. Recent advances of quantitative modeling to support invasive species eradication on islands. Conserv. Sci. Pract. 3, e246. https://doi.org/10.1111/csp2.246 (2021).

    Article 

    Google Scholar 

  • 14.

    Bertsimas, D. & Sim, M. The price of robustness. Oper. Res. 52, 35–53 (2004).

    MathSciNet 
    Article 

    Google Scholar 

  • 15.

    Ben-Haim, Y. & Demertzis, M. Decision making in times of knightian uncertainty: An info-gap perspective. Economics 10, 1–29 (2016).

    Article 

    Google Scholar 

  • 16.

    Ben-Haim, Y. Management of invasive species: Info-gap perspectives. in Invasive Species: Risk Assessment and Management (eds. Robinson, A., Walshe, T., Burgman, M. A., Nunn, M.) 266–286 (Cambridge University Press, 2017).

  • 17.

    Davidovitch, L. et al. Info-gap theory and robust design of surveillance for invasive species: The case study of Barrow Island. J. Environ. Manag. 90, 2785–2793 (2009).

    Article 

    Google Scholar 

  • 18.

    Rout, T. M., Thompson, C. J. & McCarthy, M. A. Robust decisions for declaring eradication of invasive species. J. Appl. Ecol. 46, 782–786 (2009).

    Article 

    Google Scholar 

  • 19.

    Foxcroft, L. C. Developing thresholds of potential concern for invasive alien species: Hypotheses and concepts. Koedoe. https://doi.org/10.4102/koedoe.v51i1.157 (2009).

    Article 

    Google Scholar 

  • 20.

    Pitt, J. P. W. Modelling the Spread of Invasive Species Across Heterogeneous Landscapes. (Lincoln University, 2008).

  • 21.

    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).

    Article 

    Google Scholar 

  • 22.

    Mcdonald-madden, E., Peter, W. J. B. & Possingham, H. P. Making robust decisions for conservation with restricted money and knowledge. J. Appl. Ecol. 45, 1630–1638 (2008).

    Article 

    Google Scholar 

  • 23.

    Rout, T. M., Moore, J. L. & Mccarthy, M. A. Prevent, search or destroy? A partially observable model for invasive species management. J. Appl. Ecol. 51, 804–813 (2014).

    Article 

    Google Scholar 

  • 24.

    Yemshanov, D. et al. Robust surveillance and control of invasive species using a scenario optimization approach. Ecol. Econ. 133, 86–98 (2017).

    Article 

    Google Scholar 

  • 25.

    Rödder, D., Solé, M. & Böhme, W. Predicting the potential distributions of two alien invasive Housegeckos (Gekkonidae: Hemidactylus frenatus, Hemidactylus mabouia). North-West. J. Zool. 4, 236–246 (2008).

    Google Scholar 

  • 26.

    Hoskin, C. J. The invasion and potential impact of the Asian House Gecko (Hemidactylus frenatus) in Australia. Austral. Ecol. 36, 240–251 (2011).

    Article 

    Google Scholar 

  • 27.

    García-Díaz, P., Ross, J. V., Vall-llosera, M. & Cassey, P. Low detectability of alien reptiles can lead to biosecurity management failure: A case study from Christmas Island (Australia). NeoBiota 45, 75–92 (2019).

    Article 

    Google Scholar 

  • 28.

    Scott, J. K. et al. Zero-tolerance biosecurity protects high-conservation-value island nature reserve. Sci. Rep. 7, 772–779 (2017).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Commonwealth Government of Australia. Approval—Gorgon Gas Development (EPBC Reference: 2008/4178). (2009).

  • 30.

    Jarrad, F. C. et al. Improved design method for biosecurity surveillance and early detection of non-indigenous rats. N. Z. J. Ecol. 35, 132–144 (2011).

    Google Scholar 

  • 31.

    Metlay, D. From tin roof to torn wet blanket: Predicting and observing ground water movement at a proposed nuclear waste site. in Prediction: Science, Decision Making, and the Future of Nature (eds. Sarewitz, D. R., Byerly, R., Pielke, R. A.). 276–319. (Island Press, 2000).

  • 32.

    Wintle, B. & Burgman, M. Expert Elicitation for Barrow Island Surveillance System Revision, Project Report. (2015).

  • 33.

    Vanderduys, E. & Kutt, A. Is the Asian house gecko, Hemidactylus frenatus, really a threat to Australia’s biodiversity?. Aust. J. Zool. 60, 361–367 (2013).

    Article 

    Google Scholar 

  • 34.

    McGinnis, S. M. & Stebbins, R. C. A Field Guide to Western Reptiles and Amphibians. 4th edn. (Houghton Mifflin Harcourt, 2018).

  • 35.

    Whittle, P., Jarrad, F., Edwards, K. & Mengersen, K. Design of the quarantine surveillance for non-indigenous species of invertebrates on Barrow Island. Rec. West. Aust. Mus. Suppl. 83, 113–130 (2013).

    Article 

    Google Scholar 

  • 36.

    Ben-Haim, Y. Info-gap Decision Theory: Decisions Under Severe Uncertainty. 2nd edn. (Academic Press, 2006).

  • 37.

    MathWorks. MATLAB R2018b. (MathWorks, 2018).

  • 38.

    Bogich, T. L., Liebhold, A. M. & Shea, K. To sample or eradicate? A cost minimization model for monitoring and managing an invasive species. J. Appl. Ecol. 45, 1134–1142 (2008).

    Article 

    Google Scholar 

  • 39.

    Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15, 803–812 (2012).

    Article 

    Google Scholar 

  • 40.

    Trebitz, A. S. et al. Early detection monitoring for aquatic non-indigenous species: Optimizing surveillance, incorporating advanced technologies, and identifying research needs. J. Environ. Manag. 202, 299–310 (2017).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Molina, R., Horton, T., Trappe, J. & Marcot, B. Addressing uncertainty: How to conserve and manage rare or little-known fungi. Fungal Ecol. 4, 134–146 (2011).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Contact calls in woodpeckers are individually distinctive, show significant sex differences and enable mate recognition

    Translation stalling proline motifs are enriched in slow-growing, thermophilic, and multicellular bacteria