in

Crop origins explain variation in global agricultural relevance

  • 1.

    FAOSTAT: Crops (FAO, 2109); http://www.fao.org/faostat/en/#data/QC

  • 2.

    Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).

    Article 

    Google Scholar 

  • 3.

    Prescott-Allen, R. & Prescott-Allen, C. How many plants feed the world? Conserv. Biol. 4, 365–374 (1990).

    Article 

    Google Scholar 

  • 4.

    Crittenden, A. N. & Schnorr, S. L. Current views on hunter-gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 162, 84–109 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Khoury, C. K. et al. Origins of food crops connect countries worldwide. Proc. R. Soc. B 283, 20160792 (2016).

    Article 

    Google Scholar 

  • 6.

    Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).

    Article 

    Google Scholar 

  • 7.

    Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 9.

    Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).

    Article 

    Google Scholar 

  • 11.

    Hawkesworth, S. et al. Feeding the world healthily: the challenge of measuring the effects of agriculture on health. Philos. Trans. R. Soc. B 365, 3083–3097 (2010).

    Article 

    Google Scholar 

  • 12.

    Popkin, B. M. Technology, transport, globalization and the nutrition transition food policy. Food Policy 31, 554–569 (2006).

    Article 

    Google Scholar 

  • 13.

    Spengler III, R. N. Fruit from the Sands: The Silk Road Origins of the Foods We Eat (Univ. of California Press, 2019).

  • 14.

    Vaughan, J. & Geissler, C. The New Oxford Book of Food Plants (Oxford Univ. Press, 2009).

  • 15.

    Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Wang, L. et al. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 18, 215 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Milla, R., Bastida, J. M., Turcotte, M. M. & Al, E. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).

    Google Scholar 

  • 19.

    Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Harlan, J. R. Crops and Man (ASA, 1992).

  • 21.

    Blumler, M. A. et al. in The Origins and Spread of Agriculture and Pastoralism in Eurasia (ed. Harris, D. R.) 25–50 (Smithsonian Institution Press, 1996).

  • 22.

    Hancock, J. F. Plant Evolution and the Origin of Crop Species (CABI, 2012).

  • 23.

    Harlan, J. R. The Living Fields: Our Agricultural Heritage (Cambridge Univ. Press, 1998).

  • 24.

    Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Denham, T. et al. The domestication syndrome in vegetatively propagated field crops. Ann. Bot. 125, 581–597 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Milla, R. Crop origins and phylo food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).

    Article 

    Google Scholar 

  • 28.

    Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Clement, C. R. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188–202 (1999).

    Article 

    Google Scholar 

  • 31.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Article 

    Google Scholar 

  • 32.

    Tauger, M. B. Agriculture in World History (Routledge, 2013).

  • 33.

    Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).

    Article 

    Google Scholar 

  • 34.

    Forister, M. L., Dyer, L. A., Singer, M. S., Stireman, J. O. III & Lill, J. T. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 36.

    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Richerson, P. J., Boyd, R. & Bettinger, R. L. Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiq. 66, 387–411 (2001).

    Article 

    Google Scholar 

  • 38.

    Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl Acad. Sci. USA 105, 5287–5288 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl Acad. Sci. USA 105, 5435–5440 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Mueller, U. G., Scott, J. J., Ishak, H. D., Cooper, M. & Rodrigues, A. Monoculture of leafcutter ant gardens. PLoS ONE 5, e12668 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Kingsbury, N. Hybrid, the History and Science of Plant Breeding (Univ. of Chicago Press, 2009).

  • 42.

    Food Outlook—Biannual Report on Global Food Markets: June 2020 (FAO, 2020).

  • 43.

    van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Siddique, K. H. M., Li, X. & Gruber, K. Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nat. Plants 7, 116–122 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).

  • 47.

    Milla, R. Crop Origins and Phylo Food (GitHub, accessed 1 December 2020); https://github.com/rubenmilla/Crop_Origins_Phylo

  • 48.

    Global Biodiversity Information Facility (GBIF, 2018); https://www.gbif.org

  • 49.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article 

    Google Scholar 

  • 50.

    Paradis, E., Claude, J. & Strimmer, K. {APE}: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Martin, A. R. et al. Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE 14, e0209788 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    The Plant List Version 2 (2013); http://www.theplantlist.org/

  • 53.

    Cayuela, L., la Cerda, Í. G., Albuquerque, F. S. & Golicher, D. J. taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

    Article 

    Google Scholar 

  • 54.

    Beres, B. L. et al. A systematic review of durum wheat: enhancing production systems by exploring genotype, environment, and management (Gx Ex M) synergies. Front. Plant. Sci. 11, 568657 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Paradis, E. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 3–18 (Springer, 2014).

  • 56.

    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).

    Article 

    Google Scholar 

  • 58.

    de Villemereuil, P. & Nakagawa, S. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–304 (Springer, 2014).

  • 59.

    Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Bush, S. E. et al. Unlocking the black box of feather louse diversity: a molecular phylogeny of the hyper-diverse genus Brueelia. Mol. Phylogenet. Evol. 94, 737–751 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

  • 62.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).

  • 63.

    Grafen, A. & Hamilton, W. D. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B 326, 119–157 (1989).

    CAS 
    Article 

    Google Scholar 

  • 64.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-142 (2020).

  • 65.

    Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2009).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic