FAOSTAT: Crops (FAO, 2109); http://www.fao.org/faostat/en/#data/QC
Mottet, A. et al. Livestock: on our plates or eating at our table? A new analysis of the feed/food debate. Glob. Food Sec. 14, 1–8 (2017).
Google Scholar
Prescott-Allen, R. & Prescott-Allen, C. How many plants feed the world? Conserv. Biol. 4, 365–374 (1990).
Google Scholar
Crittenden, A. N. & Schnorr, S. L. Current views on hunter-gatherer nutrition and the evolution of the human diet. Am. J. Phys. Anthropol. 162, 84–109 (2017).
Google Scholar
Khoury, C. K. et al. Origins of food crops connect countries worldwide. Proc. R. Soc. B 283, 20160792 (2016).
Google Scholar
Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).
Google Scholar
Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).
Google Scholar
Khoury, C. K. et al. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl Acad. Sci. USA 111, 4001–4006 (2014).
Google Scholar
Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).
Google Scholar
Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011).
Google Scholar
Hawkesworth, S. et al. Feeding the world healthily: the challenge of measuring the effects of agriculture on health. Philos. Trans. R. Soc. B 365, 3083–3097 (2010).
Google Scholar
Popkin, B. M. Technology, transport, globalization and the nutrition transition food policy. Food Policy 31, 554–569 (2006).
Google Scholar
Spengler III, R. N. Fruit from the Sands: The Silk Road Origins of the Foods We Eat (Univ. of California Press, 2019).
Vaughan, J. & Geissler, C. The New Oxford Book of Food Plants (Oxford Univ. Press, 2009).
Purugganan, M. D. & Fuller, D. Q. The nature of selection during plant domestication. Nature 457, 843–848 (2009).
Google Scholar
Wang, L. et al. The interplay of demography and selection during maize domestication and expansion. Genome Biol. 18, 215 (2017).
Google Scholar
Milla, R., Bastida, J. M., Turcotte, M. M. & Al, E. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018).
Google Scholar
Ellis, E. C., Klein Goldewijk, K., Siebert, S., Lightman, D. & Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Glob. Ecol. Biogeogr. 19, 589–606 (2010).
Xu, C., Kohler, T. A., Lenton, T. M., Svenning, J.-C. & Scheffer, M. Future of the human climate niche. Proc. Natl Acad. Sci. USA 117, 11350–11355 (2020).
Google Scholar
Harlan, J. R. Crops and Man (ASA, 1992).
Blumler, M. A. et al. in The Origins and Spread of Agriculture and Pastoralism in Eurasia (ed. Harris, D. R.) 25–50 (Smithsonian Institution Press, 1996).
Hancock, J. F. Plant Evolution and the Origin of Crop Species (CABI, 2012).
Harlan, J. R. The Living Fields: Our Agricultural Heritage (Cambridge Univ. Press, 1998).
Lombardo, U. et al. Early Holocene crop cultivation and landscape modification in Amazonia. Nature 581, 190–193 (2020).
Google Scholar
Denham, T. et al. The domestication syndrome in vegetatively propagated field crops. Ann. Bot. 125, 581–597 (2020).
Google Scholar
Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytol. 196, 29–48 (2012).
Google Scholar
Milla, R. Crop origins and phylo food: a database and a phylogenetic tree to stimulate comparative analyses on the origins of food crops. Glob. Ecol. Biogeogr. 29, 606–614 (2020).
Google Scholar
Larson, G. et al. Current perspectives and the future of domestication studies. Proc. Natl Acad. Sci. USA 111, 6139–6146 (2014).
Google Scholar
Esquinas-Alcázar, J. Protecting crop genetic diversity for food security: political, ethical and technical challenges. Nat. Rev. Genet. 6, 946–953 (2005).
Google Scholar
Clement, C. R. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. Econ. Bot. 53, 188–202 (1999).
Google Scholar
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
Google Scholar
Tauger, M. B. Agriculture in World History (Routledge, 2013).
Futuyma, D. J. & Moreno, G. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233 (1988).
Google Scholar
Forister, M. L., Dyer, L. A., Singer, M. S., Stireman, J. O. III & Lill, J. T. Revisiting the evolution of ecological specialization, with emphasis on insect–plant interactions. Ecology 93, 981–991 (2012).
Google Scholar
Colles, A., Liow, L. H. & Prinzing, A. Are specialists at risk under environmental change? Neoecological, paleoecological and phylogenetic approaches. Ecol. Lett. 12, 849–863 (2009).
Google Scholar
McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
Google Scholar
Richerson, P. J., Boyd, R. & Bettinger, R. L. Was agriculture impossible during the Pleistocene but mandatory during the Holocene? A climate change hypothesis. Am. Antiq. 66, 387–411 (2001).
Google Scholar
Mueller, U. G. & Rabeling, C. A breakthrough innovation in animal evolution. Proc. Natl Acad. Sci. USA 105, 5287–5288 (2008).
Google Scholar
Schultz, T. R. & Brady, S. G. Major evolutionary transitions in ant agriculture. Proc. Natl Acad. Sci. USA 105, 5435–5440 (2008).
Google Scholar
Mueller, U. G., Scott, J. J., Ishak, H. D., Cooper, M. & Rodrigues, A. Monoculture of leafcutter ant gardens. PLoS ONE 5, e12668 (2010).
Google Scholar
Kingsbury, N. Hybrid, the History and Science of Plant Breeding (Univ. of Chicago Press, 2009).
Food Outlook—Biannual Report on Global Food Markets: June 2020 (FAO, 2020).
van Kleunen, M. et al. Economic use of plants is key to their naturalization success. Nat. Commun. 11, 3201 (2020).
Google Scholar
Li, T. et al. Domestication of wild tomato is accelerated by genome editing. Nat. Biotechnol. 36, 1160–1163 (2018).
Google Scholar
Siddique, K. H. M., Li, X. & Gruber, K. Rediscovering Asia’s forgotten crops to fight chronic and hidden hunger. Nat. Plants 7, 116–122 (2021).
Google Scholar
Lancaster, L. T. Host use diversification during range shifts shapes global variation in Lepidopteran dietary breadth. Nat. Ecol. Evol. 4, 963–969 (2020).
Milla, R. Crop Origins and Phylo Food (GitHub, accessed 1 December 2020); https://github.com/rubenmilla/Crop_Origins_Phylo
Global Biodiversity Information Facility (GBIF, 2018); https://www.gbif.org
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Google Scholar
Paradis, E., Claude, J. & Strimmer, K. {APE}: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
Google Scholar
Martin, A. R. et al. Regional and global shifts in crop diversity through the Anthropocene. PLoS ONE 14, e0209788 (2019).
Google Scholar
The Plant List Version 2 (2013); http://www.theplantlist.org/
Cayuela, L., la Cerda, Í. G., Albuquerque, F. S. & Golicher, D. J. taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).
Google Scholar
Beres, B. L. et al. A systematic review of durum wheat: enhancing production systems by exploring genotype, environment, and management (Gx Ex M) synergies. Front. Plant. Sci. 11, 568657 (2020).
Google Scholar
Paradis, E. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 3–18 (Springer, 2014).
Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).
Google Scholar
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2011).
Google Scholar
de Villemereuil, P. & Nakagawa, S. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology (ed. Garamszegi, L. Z.) 287–304 (Springer, 2014).
Keck, F., Rimet, F., Bouchez, A. & Franc, A. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).
Google Scholar
Bush, S. E. et al. Unlocking the black box of feather louse diversity: a molecular phylogeny of the hyper-diverse genus Brueelia. Mol. Phylogenet. Evol. 94, 737–751 (2016).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
Grafen, A. & Hamilton, W. D. The phylogenetic regression. Philos. Trans. R. Soc. Lond. B 326, 119–157 (1989).
Google Scholar
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Development Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-142 (2020).
Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2009).
Google Scholar
Source: Ecology - nature.com