in

Current extinction rate in European freshwater gastropods greatly exceeds that of the late Cretaceous mass extinction

  • 1.

    Darwall, W. et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv. 28, 1015–1022 (2018).

    Article 

    Google Scholar 

  • 2.

    Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ. Chang. 34, 108–118 (2015).

    Article 

    Google Scholar 

  • 3.

    EEA (European Environment Agency). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe (Publications Office of the European Union, Luxembourg, 2019).

  • 4.

    Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).

    Article 

    Google Scholar 

  • 5.

    Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009).

    Article 

    Google Scholar 

  • 6.

    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. BioScience 62, 798–808 (2012).

    Article 

    Google Scholar 

  • 8.

    Poff, N. L., Olden, J. D. & Strayer, D. L. Climate change and freshwater fauna extinction risk. 309–336. In: Hannah, L. (ed.) Saving a million species (Island Press/Center for Resource Economics, Washington, 2012).

  • 9.

    De Grave, S. et al. Dead shrimp blues: a global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 10, e0120198 (2015).

    Article 
    CAS 

    Google Scholar 

  • 10.

    Böhm, M. et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia (2020) https://doi.org/10.1007/s10750-020-04385-w.

  • 11.

    Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).

    Article 

    Google Scholar 

  • 12.

    Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).

    Article 

    Google Scholar 

  • 13.

    Dudgeon, D. Freshwater biodiversity: status, threats and conservation (Cambridge University Press, Cambridge, 2020).

  • 14.

    WWF (World Wildlife Fund). Living Planet Report – 2020: Bending the curve of biodiversity loss (WWF, Gland, 2020).

  • 15.

    Döll, P. & Zhang, J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci 14, 783–799 (2010).

    Article 

    Google Scholar 

  • 16.

    Janse, J. H. et al. GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).

    Article 

    Google Scholar 

  • 17.

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).

    Article 

    Google Scholar 

  • 19.

    Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wang, J.-G., Wu, F.-Y., Tan, X.-C. & Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612–613, 97–105 (2014).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Shukla, P. R. et al. (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (IPCC, Geneva, 2019).

  • 23.

    Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).

    Article 

    Google Scholar 

  • 26.

    Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637 (2008).

    Article 

    Google Scholar 

  • 27.

    Darwall, W., Seddon, M., Clausnitzer, V. & Cumberlidge, N. Freshwater invertebrate life. 26–32. In: Collen, B., Böhm, M., Kemp, R. & Baillie, J. E. M. (eds). Spineless: status and trends of the world’s invertebrates (Zoological Society of London, London, 2012).

  • 28.

    Strong, E. E., Gargominy, O., Ponder, W. F. & Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166 (2008).

    Article 

    Google Scholar 

  • 29.

    Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proc. Natl. Acad. Sci. USA 112, 11478–11483 (2015).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs (Publications Office of the European Union, Luxembourg, 2011).

  • 31.

    Cordellier, M., Pfenninger, A., Streit, B. & Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 159, 2519–2531 (2012).

    Article 

    Google Scholar 

  • 32.

    Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).

    Article 

    Google Scholar 

  • 33.

    Georgopoulou, E., Neubauer, T. A., Harzhauser, M., Kroh, A. & Mandic, O. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history. Hydrobiologia 775, 69–82 (2016).

    Article 

    Google Scholar 

  • 34.

    IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version 2020-1. https://www.iucnredlist.org (2020).

  • 35.

    Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).

    Article 

    Google Scholar 

  • 36.

    Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E. & Mandic, O. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Sci. Rev. 143, 98–116 (2015).

    Article 

    Google Scholar 

  • 37.

    Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. Biotic selectivity during the K/T and Late Ordovician extinction events. Geol. Soc. Spec. Pap. 307, 477–489 (1996).

    Google Scholar 

  • 38.

    MacLeod, N. et al. The Cretaceous-Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).

    Article 

    Google Scholar 

  • 39.

    Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global Planet. Change 122, 29–49 (2014).

    Article 

    Google Scholar 

  • 40.

    Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).

    Article 

    Google Scholar 

  • 41.

    Henderson, J. Fossil non-marine Mollusca of North America. Geol. Soc. Spec. Pap. 3, 1–313 (1935).

    Google Scholar 

  • 42.

    Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. 481–508. In: Thierstein, H. R. & Young, J. R. (eds). Coccolithophores (Springer, Berlin, 2004).

  • 44.

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Cowie, R. H., Régnier, C., Fontaine, B. & Bouchet, P. Measuring the sixth extinction: what do mollusks tell us? Nautilus 131, 3–41 (2017).

    Google Scholar 

  • 48.

    Georgopoulou, E. et al. Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? Quat. Sci. Rev. 149, 269–278 (2016).

    Article 

    Google Scholar 

  • 49.

    Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).

    Article 
    CAS 

    Google Scholar 

  • 50.

    Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. USA 115, 11262–11267 (2018).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).

    Article 

    Google Scholar 

  • 52.

    Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).

    Article 

    Google Scholar 

  • 54.

    Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020).

    Article 

    Google Scholar 

  • 55.

    Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).

    Article 

    Google Scholar 

  • 56.

    Martinson, G. G. Mezozoiskie i Kainozoiskie Molliuski kontinentalnykh otlozhenii Sibirskoi Platformy Zabaikalia i Mongolii. Trudy Baikal’skoy Limnologicheskoy Stantzii Akademii Nauk SSSR 19, 1–332 (1961).

    Google Scholar 

  • 57.

    Pan, H. Mesozoic and Cenozoic fossil Gastropoda from Yunnan. 83-152. In: Nanjing Institute of Geology and Palaeontology (Ed.). Mesozoic Fossils from Yunnan. 2 (Science Press, Beijing, 1977).

  • 58.

    Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauly, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J. & Allmon, W. D. The generification of the fossil record. Paleobiology 40, 511–528 (2014).

    Article 

    Google Scholar 

  • 60.

    Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).

    Article 

    Google Scholar 

  • 61.

    Plummer, M. et al. coda: Output analysis and diagnostics for MCMC. R package version 0.19-3. https://cran.r-project.org/web/packages/coda/index.html (2019).

  • 62.

    R Core Team. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (2020).

  • 63.

    Chamberlain, S. rredlist: ‘IUCN’ red list client. R package version 0.6.0. http://CRAN.R-project.org/package=rredlist (2020)

  • 64.

    Bandel, K. & Riedel, F. The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65 (1994).

    Google Scholar 


  • Source: Ecology - nature.com

    Seasonal change is a major driver of soil resistomes at a watershed scale

    The future of the IoT (batteries not required)