in

Dangerous demographics in post-bleach corals reveal boom-bust versus protracted declines

  • 1.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Darling, E. S. et al. Relationships between structural complexity, coral traits, and reef fish assemblages. Coral Reefs 36, 561–575 (2017).

    ADS 
    Article 

    Google Scholar 

  • 4.

    McWilliam, M., Chase, T. J. & Hoogenboom, M. O. Neighbor diversity regulates the productivity of coral assemblages. Curr. Biol. 28, 3634–3639 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl. Acad. Sci. 118, e2015265118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Gardner, T. A. Long-term region-wide declines in caribbean corals. Science 301, 958–960 (2003).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27—year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1208909109 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Madin, J. S. et al. Cumulative effects of cyclones and bleaching on coral cover and species richness at Lizard Island. Mar. Ecol. Prog. Ser. 604, 263–268 (2018).

    ADS 
    Article 

    Google Scholar 

  • 11.

    Dietzel, A., Bode, M., Connolly, S. R. & Hughes, T. P. Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef: Demographic change in Australia’s corals. Proc. R. Soc. B Biol. Sci. 287, 20201432 (2020).

    Article 

    Google Scholar 

  • 12.

    Claar, D. C. et al. Dynamic symbioses reveal pathways to coral survival through prolonged heatwaves. Nat. Commun. 11, 1–10 (2020).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 13.

    Claar, D. C. & Baum, J. K. Timing matters: Survey timing during extended heat stress can influence perceptions of coral susceptibility to bleaching. Coral Reefs 38, 559–565 (2019).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).

    ADS 
    Article 

    Google Scholar 

  • 15.

    Hall, T. E. et al. Stony coral populations are more sensitive to changes in vital rates in disturbed environments. Ecol. Appl. 31, 1–11 (2021).

    Article 

    Google Scholar 

  • 16.

    Madin, J. S., Baird, A. H., Dornelas, M. & Connolly, S. R. Mechanical vulnerability explains size-dependent mortality of reef corals. Ecol. Lett. 17, 1008–1015 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Edmunds, P. J. & Riegl, B. Urgent need for coral demography in a world where corals are disappearing. Mar. Ecol. Prog. Ser. 635, 233–242 (2020).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Chang. 9, 40–43 (2019).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Pratchett, M. et al. Spatial, temporal and taxonomic variation in coral growth—Implications for the structure and function of coral reef ecosystems. Oceanogr. Mar. Biol. Ann. Rev. 53, 215–295 (2015).

    Google Scholar 

  • 20.

    Cantin, N. E. & Lough, J. M. Surviving coral bleaching events: Porites growth anomalies on the great barrier reef. PLoS ONE 9, e88720 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Linares, C., Pratchett, M. S. & Coker, D. J. Recolonisation of Acropora hyacinthus following climate-induced coral bleaching on the Great Barrier Reef. Mar. Ecol. Prog. Ser. 438, 97–104 (2011).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Victor, S., Golbuu, Y., Yukihira, H. & Van Woesik, R. Acropora size-frequency distributions reflect spatially variable conditions on coral reefs of Palau. Bull. Mar. Sci. 85, 149–157 (2009).

    Google Scholar 

  • 23.

    Wilson, S. K., Robinson, J. P. W., Chong-Seng, K., Robinson, J. & Graham, N. A. J. Boom and bust of keystone structure on coral reefs. Coral Reefs 38, 625–635 (2019).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Pratchett, M. S., McWilliam, M. J. & Riegl, B. Contrasting shifts in coral assemblages with increasing disturbances. Coral Reefs 39, 783–793 (2020).

    Article 

    Google Scholar 

  • 25.

    Loya, Y. et al. Coral bleaching: The winners and the losers. Ecol. Lett. 4, 122–131 (2001).

    Article 

    Google Scholar 

  • 26.

    Van Woesik, R., Sakai, K., Ganase, A. & Loya, Y. Revisiting the winners and the losers a decade after coral bleaching. Mar. Ecol. Prog. Ser. 434, 67–76 (2011).

    ADS 
    Article 

    Google Scholar 

  • 27.

    McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B Biol. Sci. 287, 20192628 (2020).

    Article 

    Google Scholar 

  • 28.

    Marshall, P. A. & Baird, A. H. Bleaching of corals on the Great Barrier Reef: Differential susceptibilities among taxa. Coral Reefs 19, 155–163 (2000).

    Article 

    Google Scholar 

  • 29.

    Graham, N. A. J., Cinner, J. E., Norström, A. V. & Nyström, M. Coral reefs as novel ecosystems: Embracing new futures. Curr. Opin. Environ. Sustain. 7, 9–14 (2014).

    Article 

    Google Scholar 

  • 30.

    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1–5 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Vercelloni, J. et al. Forecasting intensifying disturbance effects on coral reefs. Glob. Chang. Biol. 26, 2785–2797 (2020).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Team, R. C. R: A Language and Environment for Statistical Computing. (2020).

  • 35.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).

    Article 

    Google Scholar 

  • 36.

    Evans, R. D. et al. Early recovery dynamics of turbid coral reefs after recurring bleaching events. J. Environ. Manag. 268, 110666 (2020).

    Article 

    Google Scholar 

  • 37.

    Carlot, J. et al. Juvenile corals underpin coral reef carbonate production after disturbance. Glob. Chang. Biol. 27, 2623–2632 (2021).

    ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Bellwood, D. R. et al. Coral reef conservation in the Anthropocene: Confronting spatial mismatches and prioritizing functions. Biol. Conserv. 236, 604–615 (2019).

    Article 

    Google Scholar 

  • 39.

    Baird, A., Emslie, M. & Lewis, A. Extended periods of coral recruitment on the Great Barrier Reef. In Proc. 12th Int. Coral Reef Symp. (2012).

  • 40.

    Foster, N. L., Baums, I. B. & Mumby, P. J. Sexual vs. asexual reproduction in an ecosystem engineer: The massive coral Montastraea annularis. J. Anim. Ecol. 76, 384–391 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Edmunds, P. J. Patterns in the distribution of juvenile corals and coral reef community structure in St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 202, 113–124 (2000).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Hughes, T. P., Linares, C., Dakos, V., van de Leemput, I. A. & van Nes, E. H. Living dangerously on borrowed time during slow, unrecognized regime shifts. Trends Ecol. Evol. 28, 149–155 (2013).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Spatial mismatch in fish and coral loss following 2016 mass coral bleaching. Sci. Total Environ. 650, 1487–1498 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 1–7 (2019).

    Article 

    Google Scholar 

  • 46.

    Abràmoff, M. D., Hospitals, I., Magalhães, P. J. & Abràmoff, M. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).

    Google Scholar 

  • Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics

    Humpback whale song recordings suggest common feeding ground occupation by multiple populations