in

Decay stages of wood and associated fungal communities characterise diversity–decomposition relationships

  • 1.

    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Chan. 4, 625–630 (2014).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • 2.

    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Lustenhouwer, N. et al. A trait-based understanding of wood decomposition by fungi. Proc. Nat. Acad. Sci. USA 117, 11551–11558 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 5.

    Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Dickie, I. A., Fukami, T., Wilkie, J. P., Allen, R. B. & Buchanan, P. K. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol. Lett. 15, 133–141 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    van der Wal, A., Ottosson, E. & de Boer, W. Neglected role of fungal community composition in explaining variation in wood decay rates. Ecology 96, 124–133 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fung. Div. 77, 367–379 (2016).

    Article 

    Google Scholar 

  • 9.

    Purahong, W. et al. Determinants of deadwood-inhabiting fungal communities in temperate forests: Molecular evidence from a large scale deadwood decomposition experiment. Front. Microbiol. 9, Article 2120 (2018).

  • 10.

    Skelton, J. et al. Relationships among wood-boring beetles, fungi, and the decomposition of forest biomass. Mol. Ecol. 28, 4971–4986 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 11.

    Toljander, Y. K., Lindahl, B. D., Holmer, L. & Hogberg, N. O. S. Environmental fluctuations facilitate species co-existence and increase decomposition in communities of wood decay fungi. Oecologia 148, 625–631 (2006).

    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 12.

    Fukami, T. et al. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13, 675–684 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 13.

    Boddy, L. Fungal community ecology and wood decomposition process in angiosperms: From standing tree to complete decay of coarse woody debris. Ecol. Bull. 49, 43–56 (2001).

    Google Scholar 

  • 14.

    Boddy, L. & Heilmann-Clausen, J. Basidiomycete community development in temperate angiosperm wood. In Ecology of saprotrpophic basidiomycetes. (Eds. Boddy, L., Frankland, J.C., & van West, P.) 211–237 (Academic Press, 2008).

  • 15.

    Parfitt, D., Hunt, J., Dockrell, D., Rogers, H. J. & Boddy, L. Do all trees carry the seed of their own destruction? PCR reveals numerous wood decay fungi latently present in sapwood of a wide range of angiosperm trees. Fung. Ecol. 3, 338–346 (2010).

    Article 

    Google Scholar 

  • 16.

    Song, Z., Kennedy, P. G., Liew, F. J. & Schilling, J. S. Fungal endophytes as priority colonizers initiating wood decomposition. Func. Ecol. 31, 407–418 (2017).

    Article 

    Google Scholar 

  • 17.

    Cline, L. C., Schilling, J. S., Menke, J., Groenhof, E. & Kennedy, P. G. Ecological and functional effects of fungal endophytes on wood decomposition. Func. Ecol. 32, 181–191 (2018).

    Article 

    Google Scholar 

  • 18.

    Coates, D. & Rayner, A. D. M. Fungal population and community development in cut beech logs I. Establishment via the aerial cut surface. New Phytol. 101, 153–171 (1985).

    Article 

    Google Scholar 

  • 19.

    Fukasawa, Y., Osono, T. & Takeda, H. Beech log decomposition by wood-inhabiting fungi in a cool temperate forest floor: A quantitative analysis focused on the decay activity of a dominant basidiomycetes Omphalotus guepiniformis. Ecol. Res. 25, 959–966 (2010).

    Article 

    Google Scholar 

  • 20.

    Boddy, L. & Hiscox, J. Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi. Microbiol. Spec. 4, FUNK-0019-2016 (2016).

    Google Scholar 

  • 21.

    Rajala, T., Peltoniemi, M., Pennanen, T. & Makipaa, R. Fungal community dynamics in relation to substrate quality of decaying Norway spruce (Picea abies [L.] Karst.) logs in boreal forests. FEMS Microbiol. Ecol. 81, 494–505 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Rajala, T., Tuomivirta, T., Pennanen, T. & Mäkipää, R. Habitat models of wood-inhabiting fungi along a decay gradient of Norway spruce logs. Fung. Ecol. 18, 48–55 (2015).

    Article 

    Google Scholar 

  • 23.

    Rayner, A.D.M., & Boddy, L. Fungal decomposition of wood: Its biology and ecology. (Willey, 1988).

  • 24.

    Bunnell, F. L. & Houde, I. Down wood and biodiversity—Implications to forest practices. Environ. Rev. 18, 397–421 (2010).

    Article 

    Google Scholar 

  • 25.

    Wells, J. M. & Boddy, L. Interspecific carbon exchange and cost of interactions between basidiomycete mycelia in soil and wood. Func. Ecol. 16, 153–161 (2002).

    Article 

    Google Scholar 

  • 26.

    Hiscox, J. et al. Effects of pre-colonisation and temperature on interspecific fungal interactions in wood. Fung. Ecol. 21, 32–42 (2016).

    Article 

    Google Scholar 

  • 27.

    Fukasawa, Y., Osono, T. & Takeda, H. Wood decomposition abilities of diverse lignicolous fungi on nondecayed and decayed beech wood. Mycologia 103, 474–482 (2011).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Valentin, L. et al. Loss of diversity in wood-inhabiting fungal communities affects decomposition activity in Norway spruce wood. Front. Microbiol. 5, Article 230 (2014).

  • 29.

    Maynard, D., Crowther, T. W. & Bradford, M. A. Fungal interactions reduce carbon use efficiency. Ecol. Lett. 20, 1034–1042 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 30.

    Woodward, S., & Boddy, L. Interactions between saprotrophic fungi. In Ecology of saprotrophic basidiomycetes (eds Boddy, L., Frankland, J.C., van West, P.) 125–141 (Academic Press, 2008).

  • 31.

    Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Fukasawa, Y., Gilmartin, E. C., Savoury, M. & Boddy, L. Inoculum volume effects on competitive outcome and wood decay rate of brown- and white-rot basidiomycetes. Fung. Ecol. 45, 100938 (2020).

    Article 

    Google Scholar 

  • 33.

    O’Leary, J. et al. The whiff of decay: Linking volatile production and extracellular enzymes to outcomes of fungal interactions at different temperatures. Fung. Ecol. 39, 336–348 (2019).

    Article 

    Google Scholar 

  • 34.

    Boddy, L., Owens, E. M. & Chapela, I. H. Small scale variation in decay rate within logs one year after felling: effect of fungal community structure and moisture content. FEMS Microbiol. Ecol. 62, 173–184 (1989).

    Article 

    Google Scholar 

  • 35.

    Setälä, H. & McLean, M. A. Decomposition rate of organic substrates in relation to the species diversity of soil saprophytic fungi. Oecologia 139, 98–107 (2004).

    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 

  • 36.

    Yang, C. et al. Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest. Sci. Rep. 6, 31066 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 37.

    Berg, B., & McClaugherty, C. Plant litter: Decomposition, humus formation, carbon sequestration (Springer, 2003).

  • 38.

    Fukasawa, Y., Takahashi, K., Arikawa, T., Hattori, T. & Maekawa, N. Fungal wood decomposer activities influence community structure of myxomycetes and bryophytes on coarse woody debris. Fung. Ecol. 14, 44–52 (2015).

    Article 

    Google Scholar 

  • 39.

    Fukasawa, Y., Hyodo, F. & Kawakami, S. Foraging association between myxomycetes and fungal communities on coarse woody debris. Soil Biol. Biochem. 121, 95–102 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Fukasawa, Y. Fungal succession and decomposition of Pinus densiflora snags. Ecol. Res. 33, 435–444 (2018).

    Article 

    Google Scholar 

  • 41.

    Fukasawa, Y., Osono, T. & Takeda, H. Effects of attack of saprobic fungi on twig litter decomposition by endophytic fungi. Ecol. Res. 24, 1067–1073 (2009).

    Article 

    Google Scholar 

  • 42.

    Hiscox, J. & Boddy, L. Armed and dangerous—Chemical warfare in wood decay communities. Fung. Biol. Rev. 31, 169–184 (2017).

    Article 

    Google Scholar 

  • 43.

    Presley, G.N., Zhang, J., Purvine, S.O., & Schilling, J.S. Functional genomics, transcriptomics, and proteomics reveal distinct combat strategies between lineages of wood-degrading fungi with redundant wood decay mechanisms. Front. Microbiol. 11, article 1646 (2020).

  • 44.

    Hiscox, J., Savoury, M., Vaughan, I. P., Muller, C. T. & Boddy, L. Antagonistic fungal interactions influence carbon dioxide evolution from decomposing wood. Fung. Ecol. 14, 24–32 (2015).

    Article 

    Google Scholar 

  • 45.

    Zhang, X., Xu, C. & Wang, H. Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioengineer. 104, 149–151 (2007).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Horisawa, S., Inoue, A. & Yamanaka, Y. Direct ethanol production from lignocellulosic materials by mixed culture of wood rot fungi Schizophyllum commune, Bjerkandera adusta, and Fomitopsis palustris. Fermentation 5, 21 (2019).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Schilling, J. S., Kaffenberger, J. T., Held, B. W., Ortiz, R. & Blanchette, R. A. Using wood rot phenotypes to illuminate the “Gray” among decomposer fungi. Front. Microbiol 11, 1288 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Crawford, R. H., Carpenter, S. E. & Harmon, M. E. Communities of filamentous fungi and yeast in decomposing logs of Pseudotsuga menziesii. Mycologia 82, 759–765 (1990).

    Article 

    Google Scholar 

  • 49.

    Lumley, T. C., Gignac, L. D. & Currah, R. S. Microfungus communities of white spruce and trembling aspen logs and different stages of decay in disturbed and undisturbed sites in the boreal mixedwood region of Alberta. Can. J. Bot. 79, 76–92 (2001).

    Google Scholar 

  • 50.

    Fukasawa, Y., Osono, T. & Takeda, H. Microfungus communities of Japanese beech logs at different stages of decay in a cool temperate deciduous forest. Can. J. For. Res. 39, 1606–1614 (2009).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Fukasawa, Y., Osono, T. & Takeda, H. Dynamics of physicochemical properties and occurrence of fungal fruit bodies during decomposition of coarse woody debris of Fagus crenata. J. For. Res. 14, 20–29 (2009).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Maynard, D., Crowther, T. W. & Bradford, M. A. Competitive network determines the direction of the diversity-function relationship. Proc. Natl. Acad. Sci. USA 114, 11464–11469 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Kubart, A., Vasaitis, R., Stenlid, J. & Dahlberg, A. Fungal communities in Norway spruce stumps along a latitudinal gradient in Sweden. For. Ecol. Manag. 371, 50–58 (2016).

    Article 

    Google Scholar 

  • 54.

    MacArthur, R.H., & Wilson, E.O. The Theory of Island Biogeography. (Princeton University Press, 2001).

  • 55.

    Yachi, S. & Loreau, M. Biodiversity and ecosystem functioning productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 56.

    Maynard, D. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Talbot, J. M. et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA 111, 6341–6346 (2014).

    CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 

  • 58.

    Pyle, C. & Brown, M. M. Heterogeneity of wood decay classes within hardwood logs. For. Ecol. Manag. 114, 253–259 (1999).

    Article 

    Google Scholar 

  • 59.

    Carini, P. et al. Effects of spatial variability and relic DNA removal on the detection of temporal dynamics in soil microbial communities. mBio 11, e02776-19 (2020).

  • 60.

    Fukasawa, Y. & Matsuoka, S. Communities of wood-inhabiting fungi in dead pine logs along a geographical gradient in Japan. Fung. Ecol. 18, 75–82 (2015).

    Article 

    Google Scholar 

  • 61.

    Worrall, J. J., Anagnost, S. E. & Zabel, R. A. Comparison of wood decay among diverse lignicolous fungi. Mycologia 89, 199–219 (1997).

    Article 

    Google Scholar 

  • 62.

    Deacon, J. W. Decomposition of filter paper cellulose by thermophilic fungi acting singly, in combination, and in sequence. Tr. Br. Mycol. Soc. 85, 663–669 (1985).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Fukasawa, Y. Effects of wood decomposer fungi on tree seedling establishment on coarse woody debris. For. Ecol. Manag. 266, 232–238 (2012).

    Article 

    Google Scholar 

  • 64.

    Toju, H., Tanabe, A. S., Yamamoto, S. & Sato, H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. PLoS ONE 7, e40863 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 65.

    Tanabe, A. S. & Toju, H. Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS ONE 8, e76910 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 66.

    Osono, T. Metagenomic approach yields insights into fungal diversity and functioning. In Species diversity and community structure (eds Sota, T., Kagata, H., Ando, Y., Utsumi, S., & Osono, T.) 1–23 (Springer, 2014).

  • 67.

    Ohtsubo, Y., Ikeda-Ohtsubo, W., Nagata, Y. & Tsuda, M. GenomeMatcher: a graphical user interface for DNA sequence comparison. BMC Bioinform. 9, 376. https://doi.org/10.1186/1471-2105-9-376 (2008).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Ovaskainen, O., & Abrego, N. Joint Species Distribution Modelling: With Application in R (Cambridge University Press, 2020).

  • 69.

    R Core Team. R: A language and environment for statistical computing. The R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org (2019).


  • Source: Ecology - nature.com

    To advance climate action, MIT seeks partnerships beyond industry

    Top collegiate inventors awarded 2021 Lemelson-MIT Student Prize