in

Decrease in volume and density of foraminiferal shells with progressing ocean acidification

  • 1.

    Collins, M. et al. Long-term climate change: Projections, commitments and irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).

  • 2.

    Kawahata, H. et al. Perspective of the response by marine calcifiers to global warming and ocean acidification –Behavior of corals and foraminifers in the high CO2 world in “hot house”. Prog. Earth Planet Sci. 6, 5 (2019).

    Article 

    Google Scholar 

  • 3.

    Kroeker, K. J., Kordas, R. L., Crim, R. N. & Singh, G. G. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol. Lett. 13, 1419–1434 (2010).

    Article 

    Google Scholar 

  • 4.

    Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Schiebel, R. Planktic foraminiferal sedimentation and the marine calcite budget. Glob. Biogeochem. Cycles 16, 1065 (2002).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 6.

    Keul, N., Langer, G., de Nooijer, L. J. & Bijma, J. Effect of ocean acidification on the benthic foraminifera Ammonia sp. is caused by a decrease in carbonate ion concentration. Biogeosciences 10, 6185–6198 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 7.

    Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic Foraminifera: Living sands in a changing ocean. Biol. Bull. 226, 169–186 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Prazeres, M., Uthicke, S. & Pandolfi, J. M. Ocean acidification induces biochemical and morphological changes in the calcification process of large benthic foraminifera. Proc. R. Soc. B 282, 20142782 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    Iwasaki, S. et al. Sensitivity of planktic foraminiferal test bulk density to ocean acidification. Sci. Rep. 9, 9803 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Hohenegger, J., Kinoshita, S., Briguglio, A., Eder, W. & Wöger, J. Lunar cycles and rainy seasons drive growth and reproduction in nummulitid foraminifera, important producers of carbonate buildups. Sci. Rep. 9, 8286 (2019).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Kinoshita, S. et al. Temperature effects on the shell growth of a larger benthic foraminifer (Sorites orbiculus): Results from culture experiments and micro X-ray computed tomography. Mar. Micropaleontol. 163, 101960 (2021).

    ADS 
    Article 

    Google Scholar 

  • 12.

    Fujita, K. & Fujimura, H. Organic and inorganic carbon production by algal symbiont-bearing foraminifera on northwest Pacific coral-reef flat. J. Foraminifer. Res. 38, 117–126 (2008).

    Article 

    Google Scholar 

  • 13.

    Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58, 31–44 (2005).

    ADS 
    Article 

    Google Scholar 

  • 14.

    Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology. 12858. https://doi.org/10.1111/sed.12858 (2021).

  • 15.

    Morse, J. W., Andersson, A. J. & Mackenzie, F. T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 70, 5814–5830 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Fujita, K., Nishi, H. & Saito, T. Population dynamics of Marginopora kudakajimaensis Gudmundsson (Foraminifera: Soritidae) in the Ryukyu Islands, the tropical northwest Pacific. Mar. Micropaleontol. 38, 267–284 (2000).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Kuroyanagi, A., Kawahata, H., Suzuki, A., Fujita, K. & Irie, T. Impacts of ocean acidification on large benthic foraminifers: Results from laboratory experiments. Mar. Micropaleontol. 73, 190–195 (2009).

    ADS 
    Article 

    Google Scholar 

  • 18.

    Barker, S. & Elderfield, H. Foraminiferal calcification response to glacial–interglacial changes in atmospheric CO2. Science 297, 833–836 (2002).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Osborne, E. B. et al. Calcification of the planktonic foraminifera Globigerina bulloides and carbonate ion concentration: Results from the Santa Barbara Basin. Paleoceanography 31, 1083–1102 (2016).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Mollica, N. R. et al. Ocean acidification affects coral growth by reducing skeletal density. Proc. Natl. Acad. Sci. 115, 1754–1759 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Schmidt, C., Kucera, M. & Uthicke, S. Combined effects of warming and ocean acidification on coral reef Foraminifera Marginopora vertebralis and Heterostegina depressa. Coral Reefs 33, 805–818 (2014).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Sinutok, S., Hill, R., Kühl, M., Doblin, M. & Ralph, P. Ocean acidification and warming alter photosynthesis and calcification of the symbiont-bearing foraminifera Marginopora vertebralis. Mar. Biol. 161, 2143–2154 (2014).

    CAS 
    Article 

    Google Scholar 

  • 23.

    ter Kuile, B., Erez, J. & Padan, R. Mechanisms for the uptake of inorganic carbon by two species of symbiont-bearing foraminifera. Mar. Biol. 103, 241–251 (1989).

    Article 

    Google Scholar 

  • 24.

    Nijweide, P. J., Kawilarang-de Haas, E. W. & Wassenaar, A. M. Alkaline phosphatase and calcification, correlated or not?. Metab. Bone Dis. Relat. Res. 3, 61–66 (1981).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Guo, M. K. & Messer, H. H. A comparison of Ca2+-, Mg2+-ATPase and alkaline phosphatase activities of rat incisor pulp. Calc. Tissue Res. 26, 33–38 (1978).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Vogel, N. & Uthicke, S. Calcification and photobiology in symbiont-bearing benthic foraminifera and responses to a high CO2 environment. J. Exp. Mar. Biol. Ecol. 424–425, 15–24 (2012).

    Article 
    CAS 

    Google Scholar 

  • 27.

    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer, 2017).

    Book 

    Google Scholar 

  • 28.

    Bassinot, F. C., Mélières, F., Gehlen, M., Levi, C. & Labeyrie, L. Crystallinity of foraminifera shells: A proxy to reconstruct past botto m water CO3= changes?. Geochem. Geophys. Geosyst. 5, Q08D10 (2004).

    Article 

    Google Scholar 

  • 29.

    Broecker, W. & Clark, E. Shell weights from the South Atlantic. Geochem. Geophys. Geosyst. 5, Q03003 (2004).

    ADS 
    Article 

    Google Scholar 

  • 30.

    Beer, C. J., Schiebel, R. & Wilson, P. A. Testing planktic foraminiferal shell weight as a surface water [CO32] proxy using plankton net samples. Geology 38, 103–106 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Naik, S. S., Naidu, P. D., Govil, P. & Godad, S. Relationship between weights of planktonic foraminifer shell and surface water CO3= concentration during the Holocene and Last Glacial Period. Mar. Geol. 275, 278–282 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nat. Geosci. 2, 276–280 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 33.

    Gonzalez-Mora, B., Sierro, F. J. & Flores, J. A. Controls of shell calcification in planktonic foraminifers. Quat. Sci. Rev. 27, 956–961 (2008).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Marr, J. P. et al. Ecological and temperature controls on Mg/Ca ratios of Globigerina bulloides from the southwest Pacific Ocean. Paleoceanography 26, PA2209 (2011).

    ADS 
    Article 

    Google Scholar 

  • 35.

    de Villiers, S. A 425 ka record of foraminiferal shell weight variability in the western Equatorial Pacific. Paleoceanography 18, 1080 (2003).

    ADS 

    Google Scholar 

  • 36.

    de Villiers, S. Occupation of an ecological niche as the fundamental control on the shell-weight of calcifying planktonic foraminifera. Mar. Biol. 144, 45–50 (2004).

    Article 

    Google Scholar 

  • 37.

    Reymond, C. E., Lloyd, A., Kline, D. I., Dove, S. G. & Pandolfi, J. M. Decline in growth of foraminifer Marginopora rossi under eutrophication and ocean acidification scenarios. Glob. Change Biol. 19, 291–302 (2013).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Weinkauf, M. F. G., Moller, T., Koch, M. C. & Kucera, M. Calcification intensity in planktic foraminifera reflects ambient conditions irrespective of environmental stress. Biogeosciences 10, 6639–6655 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 39.

    Doo, S. S. et al. Amelioration of ocean acidification and warming effects through physiological buffering of a macroalgae. Ecol. Evol. 10, 8465–8475 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Hikami, M. et al. Contrasting calcification responses to ocean acidification between two reef foraminifers harboring different algal symbionts. Geophys. Res. Lett. 38, L19601 (2011).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Sanyal, A. et al. Oceanic pH control on the boron isotopic composition of foraminifera: Evidence from culture experiments. Paleoceanography 11, 513–517 (1996).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Anagnostou, E. et al. Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate. Nature 533, 380–384 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Foster, G. L. & Rae, J. W. B. Reconstructing ocean pH with boron isotopes in foraminifera. Annu. Rev. Earth Planet. Sci. 44, 207–237 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Dove, S. G. et al. Future reef decalcification under a business-as-usual CO2 emission scenario. Proc. Nat. Acad. Sci. 110, 15342–15347 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Nat. Acad. Sci. 118, 2015265118 (2021).

    Article 
    CAS 

    Google Scholar 

  • 47.

    Langer, M. R., Silk, M. T. & Lipps, J. H. Global ocean carbonate and carbon dioxide production: the role of reef foraminifera. J. Foraminifer. Res 27, 271–277 (1997).

    Article 

    Google Scholar 

  • 48.

    Pierrot, D., Lewis E. D. & Wallace, D.W. MS EXCEL Program Developed for CO2 System Calculations. ORNL/CDIAC-105a. (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, 2006). https://doi.org/10.3334/cdiac/otg.co2sys_xls_cdiac105a.

  • 49.

    Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).

    MathSciNet 
    MATH 
    Article 

    Google Scholar 

  • 50.

    Bartlett, M. S. Properties of sufficiency and statistical test. Proc. R. Soc. A 160, 268–282 (1937).

    ADS 
    MATH 

    Google Scholar 


  • Source: Ecology - nature.com

    Phytoplankton biodiversity and the inverted paradox

    Rover images confirm Jezero crater is an ancient Martian lake