in

Deforestation is the turning point for the spreading of a weedy epiphyte: an IBM approach

[adace-ad id="91168"]
  • 1.

    de Wet, J. M. J. & Harlan, J. R. Weeds and domesticates: Evolution in the man-made habitat. Econ. Bot. 29(2), 99–108. https://doi.org/10.1007/BF02863309 (1975).

    Article 

    Google Scholar 

  • 2.

    Ceballos, G. et al. Accelerated modern human—Induced species losses: Entering the sixth mass extinction. Sci. Adv. 1(June), 1–6. https://doi.org/10.1126/sciadv.1400253 (2015).

    Article 

    Google Scholar 

  • 3.

    Wilcove, D. S. Nest predation in forest tracts and the decline of migratory songbirds. Ecology 66(4), 1211–1214 (1985).

    Article 

    Google Scholar 

  • 4.

    Airoldi, L. & Bulleri, F. Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS ONE https://doi.org/10.1371/journal.pone.0022985 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Baker, H. G. The evolution of weeds. Annu. Rev. Ecol. Syst. 5, 1–24. https://doi.org/10.2307/2096877 (1974).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Richardson, D. M. et al. Naturalization and invasion of alien plants: Concepts and definitions. Divers. Distrib. 6, 93–107 (2008).

    Article 

    Google Scholar 

  • 7.

    van Etten, M. L., Conner, J. K., Chang, S. M. & Baucom, R. S. Not all weeds are created equal: A database approach uncovers differences in the sexual system of native and introduced weeds. Ecol. Evol. 7(8), 2636–2642. https://doi.org/10.1002/ece3.2820 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Booth, B. D. & Swanton, C. J. Assembly theory applied to weed communities 50th Anniversary—Invited Article Assembly theory applied to weed communities. Weed Sci. 50(3), 2–13. https://doi.org/10.1614/0043-1745(2002)050 (2002).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Kuester, A., Conner, J. K., Culley, T. & Baucom, R. S. How weeds emerge: A taxonomic and trait-based examination using United States data. New Phytol. 202(3), 1055–1068. https://doi.org/10.1111/nph.12698 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    van Kleunen, M. et al. The ecology and evolution of alien plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110617-062654 (2018).

    Article 

    Google Scholar 

  • 11.

    de Bona, S. et al. Spatio-temporal dynamics of density-dependent dispersal during a population colonisation. Ecol. Lett. 22, 634–644 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 12.

    Baker, H. G. Self-compatibility and establishment after “long-distance” dispersal. Evolution 9(3), 347. https://doi.org/10.2307/2405656 (1955).

    Article 

    Google Scholar 

  • 13.

    Razanajatovo, M. et al. Plants capable of selfing are more likely to become naturalized. Nat. Commun. 7, 13313. https://doi.org/10.1038/ncomms13313 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Vallejo-Marín, M., Dorken, M. E. & Barrett, S. C. H. The ecological and evolutionary consequences of clonality for plant mating. Annu. Rev. Ecol. Evol. Syst. 41(1), 193–213. https://doi.org/10.1146/annurev.ecolsys.110308.120258 (2010).

    Article 

    Google Scholar 

  • 15.

    Rodger, J. G., Van Kleunen, M. & Johnson, S. D. Pollinators, mates and Allee effects: The importance of self-pollination for fecundity in an invasive lily. Funct. Ecol. 27(4), 1023–1033. https://doi.org/10.1111/1365-2435.12093 (2013).

    Article 

    Google Scholar 

  • 16.

    Barrett, S. C. H. & Harder, L. D. The ecology of mating and its evolutionary consequences in seed plants. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev-ecolsys-110316-023021 (2017).

    Article 

    Google Scholar 

  • 17.

    Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. Clonal plant architecture: A comparative analysis of form and function. In The Ecology and Evolution of Clonal Plants (eds De Kroon, H. & Van Groenendael, J. M.) 1–29 (Backhuys, 1997).

    Google Scholar 

  • 18.

    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. 112(29), 8859–8866. https://doi.org/10.1073/pnas.1501712112 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Heywood, J. S. Spatial analysis of genetic variation in plant populations. Annu. Rev. Ecol. Syst. 22, 335–355 (1991).

    Article 

    Google Scholar 

  • 20.

    Barrett, S. C. H. Evolution of mating systems: Outcrossing versus selfing. In The Princeton Guide to Evolution (ed. Losos, J. B.) 356–362 (Princeton University Press, 2013).

    Google Scholar 

  • 21.

    Barrett, S. C. H., Arunkumar, R. & Wright, S. I. The demography and population genomics of evolutionary transitions to self-fertilization in plants. Philos. Trans. R. Soc. B Biol. Sci. 369(1648), 20130344 (2014).

    Article 

    Google Scholar 

  • 22.

    Picó, F. X., Quintana-Ascencio, P. F., Mildén, M., Ehrlén, J. & Pfingsten, I. Modelling the effects of genetics and habitat on the demography of a grassland herb. Basic Appl. Ecol. 10(2), 122–130. https://doi.org/10.1016/j.baae.2008.02.006 (2009).

    Article 

    Google Scholar 

  • 23.

    Ellstrand, N. C. & Roose, M. L. Patterns of genotypic diversity in clonal plant species. Am. J. Bot. 74, 123–131 (1987).

    Article 

    Google Scholar 

  • 24.

    Loh, R., Scarano, F. R., Alves-Ferreira, M. & Salgueiro, F. Implications of clonality to population genetic structure of the nurse species Aechmea nuducaulis (L.) Griseb. (Bromeliaceae). Bot. J. Linn. Soc. 178, 329–341 (2015).

    Article 

    Google Scholar 

  • 25.

    Hedrick, P. W. Purging inbreeding depression and the probability of extinction: Full-sib mating. Heredity 73, 363–372. https://doi.org/10.1038/hdy.1994.183 (1994).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Arunkumar, R., Ness, R. W., Wright, S. I. & Barrett, S. C. H. The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations. Genetics 199(3), 817–829. https://doi.org/10.1534/genetics.114.172809 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 27.

    Pannell, J. R. & Barrett, S. C. H. Baker’s law revisited: Reproductive assurance in a metapopulation. Evolution 52(3), 657–668. https://doi.org/10.2307/2411261 (1998).

    Article 
    PubMed 

    Google Scholar 

  • 28.

    Hamrick, J. L. & Trapnell, D. W. Using population genetic analyses to understand seed dispersal patterns. Acta Oecologica 37, 641–649 (2011).

    ADS 
    Article 

    Google Scholar 

  • 29.

    Côrtes, M. C. et al. Low plant density enhances gene dispersal in the Amazonian understory herb Heliconia acuminata. Mol. Ecol. 22, 5716–5729 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Trapnell, D. W., Hamrick, J. L., Ishibashi, C. D. & Kartzinel, T. R. Genetic inference of epiphytic orchid colonization; it may only take one. Mol. Ecol. 22, 3680–3692. https://doi.org/10.1111/mec.12338 (2013).

    Article 
    PubMed 

    Google Scholar 

  • 31.

    Chung, M. Y. et al. Fine-scale genetic structure in populations of the spring ephemeral herb Megaleranthis saniculifolia (Ranunculaceae). Flora Morphol. Distrib. Funct. Ecol. Plants 240, 16–24 (2018).

    Google Scholar 

  • 32.

    Roberts, N. R., Dalton, P. J. & Jordan, G. J. Epiphytic ferns and bryophytes of Tasmanian tree-ferns: A comparison of diversity and composition between two host species. Austral Ecol. 30(2), 146–154. https://doi.org/10.1111/j.1442-9993.2005.01440.x (2005).

    Article 

    Google Scholar 

  • 33.

    Cardelús, C. L. & Chazdon, R. L. Inner-crown microenvironments of two emergent tree species in a lowland wet forest. Biotropica 37(2), 238–244. https://doi.org/10.1111/j.1744-7429.2005.00032.x (2005).

    Article 

    Google Scholar 

  • 34.

    Quaresma, A. C., Piedade, M. T. F., Wittmann, F. & ter Steege, H. Species richness, composition, and spatial distribution of vascular epiphytes in Amazonian black-water floodplain forests. Biodivers. Conserv. 27(8), 1981–2002. https://doi.org/10.1007/s10531-018-1520-3 (2018).

    Article 

    Google Scholar 

  • 35.

    Claver, F. K., Alaniz, J. R. & Caldíz, D. O. Tillandsia spp.: Epiphytic weeds of trees and bushes. For. Ecol. Manag. 6(4), 367–372. https://doi.org/10.1016/0378-1127(83)90044-0 (1983).

    Article 

    Google Scholar 

  • 36.

    Bartoli, C. G., Beltrano, J., Fernández, L. V. & Caldíz, D. O. Control of the epiphytic weeds Tillandsia recurvata and Tillandsia aeranthos with different herbicides. For. Ecol. Manage. 59, 289–294 (1993).

    Article 

    Google Scholar 

  • 37.

    Flores-Palacios, A., García-Franco, J. G. & Capistrán-Barradas, A. Biomass, phorophyte specificity and distribution of Tillandsia recurvata in a tropical semi-desert environment (Chihuahuan Desert, Mexico). Plant Ecology and Evolution 148(1), 68–75 (2015).

    Article 

    Google Scholar 

  • 38.

    Birge, W. I. The anatomy and some biological aspects of the “ball moss”, Tillandsia recurvata, 1–24. L. Bull. Univ. Tex. 194(20) (1911).

  • 39.

    Smith, L. B. & Downs, R. J. Tillandsioideae (Bromeliaceae). In Flora Neotropica Monograph 14(2), 663–1492 (1977).

  • 40.

    Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in speciation. Biological Journal of the Linnaean Society, 58(July), 247–276. Retrieved from papers3://publication/uuid/B9DB7D5E-D6AE-404C-BFFC-9F8133453294

  • 41.

    McWilliams, E. Chronology of the Natural Range Expansion of Tillandsia recurvata (Bromeliaceae) in Texas. Contributions to Botany 15(2), 343–346 (1992).

  • 42.

    Flores-Palacios, A., Barbosa-Duchateau, C. L., Valencia-Díaz, S., Capistrán-Barradas, A. & García-Franco, J. G. Direct and indirect effects of Tillandsia recurvata on Prosopis laevigata in the Chihuahua desert scrubland of San Luis Potosi, Mexico. J. Arid Environ. 104, 88–95. https://doi.org/10.1016/j.jaridenv.2014.02.010 (2014).

    ADS 
    Article 

    Google Scholar 

  • 43.

    Benzing, D. H. Bromeliaceae: Profile of an Adaptive Radiation (Cambridge University Press, 2000).

    Book 

    Google Scholar 

  • 44.

    Benzing, D. H. Air Plants: Epiphytes and Aerial Gardens (Cornell University Press, 2012).

    Book 

    Google Scholar 

  • 45.

    Foster, M. D. Blueprint of the jungle as depicted by the altitude of growth of the Bromeliadswith notes on the culture of certain tropical epiphytes. Bull. N. Y. Bot. Garden 46, 9–16 (1945).

    Google Scholar 

  • 46.

    Soltis, D. E., Gilmartin, A. J., Rieseberg, L. & Gardner, S. Genetic variation in the epiphytes Tillandsia ionantha and T. recurvata (Bromeliaceae). Am. J. Bot. 74(4), 531–537 (1987).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Orozco-Ibarrola, O. A., Flores-Hernández, P. S., Victoriano-Romero, E., Corona-López, A. M. & Flores-Palacios, A. Are breeding system and florivory associated with the abundance of Tillandsia species (Bromeliaceae)?. Bot. J. Linn. Soc. 177(1), 50–65. https://doi.org/10.1111/boj.12225 (2015).

    Article 

    Google Scholar 

  • 48.

    Chilpa-Galván, N. et al. Seed traits favouring dispersal and establishment of six epiphytic Tillandsia (Bromeliaceae) species. Seed Sci. Res. https://doi.org/10.1017/S0960258518000247 (2018).

    Article 

    Google Scholar 

  • 49.

    Southwood, T. & Kennedy, C. Trees as islands. Oikos 41(3), 359–371. https://doi.org/10.2307/3544094 (1983).

    Article 

    Google Scholar 

  • 50.

    Burns, K. C. Network properties of an epiphyte metacommunity. J. Ecol. 95(5), 1142–1151 (2007).

    Article 

    Google Scholar 

  • 51.

    Trapnell, D. W., Hamrick, J. L. & Nason, J. D. Three-dimensional fine-scale genetic structure of the neotropical epiphytic orchid, Laelia rubescens. Mol. Ecol. 13, 1111–1118 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Torres, E., Riofrío, M.-L. & Iriondo, J. M. Complex fine-scale spatial genetic structure in Epidendrum rhopalostele: an epiphytic orchid. Heredity https://doi.org/10.1038/s41437-018-0139-1 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Victoriano-Romero, E., Valencia-Díaz, A., Toledo-Hernández, V. H. & Flores-Palacios, A. Dispersal limitation of Tillandsia species correlates with rain and host structure in a central Mexican tropical dry forest. PLoS ONE 12(2), e0171614 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 54.

    Martins, S. E. (2009). Flora fanerogâmica do estado de São Paulo. FAPESP: Instituto de Botânica.

  • 55.

    Chaves, C. J. N., Dyonisio, J. C. J. C. & Rossatto, D. R. D. R. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages. AoB Plants 8(October 2015), plw010. https://doi.org/10.1093/aobpla/plw010 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: Disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24(24), 6021–6040. https://doi.org/10.1111/mec.13454 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Cushman, S. A., Shirk, A. & Landguth, E. L. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes. Landsc. Ecol. 27(3), 369–380. https://doi.org/10.1007/s10980-011-9693-0 (2012).

    Article 

    Google Scholar 

  • 58.

    Jackson, N. D. & Fahrig, L. Habitat amount, not habitat configuration, best predicts population genetic structure in fragmented landscapes. Landsc. Ecol. 31(5), 951–968. https://doi.org/10.1007/s10980-015-0313-2 (2016).

    Article 

    Google Scholar 

  • 59.

    Grimm, V. & Railsback, S. F. Individual-Based Modelling and Ecology (Princeton University Press, 2005).

    MATH 
    Book 

    Google Scholar 

  • 60.

    Csilléry, K., Blum, M. G. B., Gaggiotti, O. E. & François, O. Approximate Bayesian Computation (ABC) in practice. Trends Ecol. Evol. 25(7), 410–418. https://doi.org/10.1016/j.tree.2010.04.001 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 61.

    Udupa, S. M. & Baum, M. High mutation rate and mutational bias at (TAA)n microsatellite loci in chickpea (Cicer arietinum L.). Mol. Genet. Genom. 265(6), 1097–1103. https://doi.org/10.1007/s004380100508 (2001).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Anmarkrud, J. A., Kleven, O., Bachmann, L. & Lifjeld, J. T. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the hypervariable avian microsatellite locus HrU10. BMC Evol. Biol. 8(1), 1–10. https://doi.org/10.1186/1471-2148-8-138 (2008).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Marriage, T. N. et al. Direct estimation of the mutation rate at dinucleotide microsatellite loci in Arabidopsis thaliana (Brassicaceae). Heredity 103(4), 310–317. https://doi.org/10.1038/hdy.2009.67 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 64.

    Bernal, R., Valverde, T. & Hernández-Rosas, L. Habitat preference of the epiphyte Tillandsia recurvata (Bromeliaceae) in a semi-desert environment in Central Mexico. Can. J. Bot. 83(10), 1238–1247 (2005).

    Article 

    Google Scholar 

  • 65.

    Chaves, C. J. & Rossatto, D. R. Unravelling intricate interactions among atmospheric bromeliads with highly overlapping niches in seasonal systems. Plant Biol. 22(2), 243–251 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 66.

    Vekemans, X. & Hardy, O. J. New insights from fine-scale spatial genetic structure analyses in plant populations. Mol. Ecol. 13(4), 921–935. https://doi.org/10.1046/j.1365-294X.2004.02076.x (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Ward, S. Genetic analysis of invasive plant populations at different spatial scales. Biol. Invasions 8(3), 541–552. https://doi.org/10.1007/s10530-005-6443-8 (2006).

    Article 

    Google Scholar 

  • 68.

    Pettengill, J. B., Briscoe Runquist, R. D. & Moeller, D. A. Mating system divergence affects the distribution of sequence diversity within and among populations of recently diverged subspecies of Clarkia xantiana (Onagraceae). Am. J. Bot. 103(1), 99–109. https://doi.org/10.3732/ajb.1500147 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 69.

    Atwater, D. Z., Fletcher, R. A., Dickinson, C. C., Paterson, A. H. & Barney, J. N. Evidence for fine-scale habitat specialization in an invasive weed. J. Plant Ecol. 11(2), 189–199. https://doi.org/10.1093/jpe/rtw124 (2018).

    Article 

    Google Scholar 

  • 70.

    Li, J. & Dong, M. Fine-scale clonal structure and diversity of invasive plant Mikania micrantha H.B.K. and its plant parasite Cuscuta campestris Yunker. Biol. Invasions 11(3), 687–695. https://doi.org/10.1007/s10530-008-9283-5 (2009).

    MathSciNet 
    Article 

    Google Scholar 

  • 71.

    Ren, M. X., Cafasso, D., Cozzolino, S. & Pinheiro, F. Extensive genetic differentiation at a small geographical scale: Reduced seed dispersal in a narrow endemic marsh orchid, Anacamptis robusta. Bot. J. Linn. Soc. 183(3), 429–438. https://doi.org/10.1093/botlinnean/bow017 (2017).

    Article 

    Google Scholar 

  • 72.

    Barluenga, M. et al. Fine-scale spatial genetic structure and gene dispersal in Silene latifolia. Heredity 106(1), 13–24. https://doi.org/10.1038/hdy.2010.38 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    Charbonneau, A. et al. Weed evolution: Genetic differentiation among wild, weedy, and crop radish. Evol. Appl. https://doi.org/10.1111/eva.12699 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Sagnard, F., Oddou-Muratorio, S., Pichot, C., Vendramin, G. G. & Fady, B. Effects of seed dispersal, adult tree and seedling density on the spatial genetic structure of regeneration at fine temporal and spatial scales. Tree Genet. Genomes 7(1), 37–48. https://doi.org/10.1007/s11295-010-0313-y (2011).

    Article 

    Google Scholar 

  • 75.

    Counsens, R. & Mortimer, M. Dynamics of Weed Populations (Cambridge University Press, 1995).

    Book 

    Google Scholar 

  • 76.

    Loreau, M. et al. Unifying sources and sinks in ecology and Earth sciences. Biol. Rev. 88, 365–379 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 77.

    dos Santos, L. S. et al. Generalized Allee effect model. Theory Biosci. 133, 117–124 (2014).

    PubMed 

    Google Scholar 

  • 78.

    Spruch, L. et al. Modeling community assembly on growing habitat “islands”: A case study on trees and their vascular epiphyte communities. Theor. Ecol. 12, 1–17 (2019).

    Article 

    Google Scholar 

  • 79.

    Einzmann, H. J. R. & Zotz, G. “No signs of saturation”: long-term dynamics of vascular epiphyte communities in a human-modified landscape. Biodivers. Conserv. 26, 1393–1410 (2017).

    Article 

    Google Scholar 

  • 80.

    Belinchón, R., Harrison, P. J., Mair, L., Várkonyi, G. & Snäll, T. Local epiphyte establishment and future metapopulation dynamics in landscapes with different spatiotemporal properties. Ecology 98(3), 741–750. https://doi.org/10.1002/ecy.1686 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 81.

    Vergara-Torres, C. A., Pacheco-Álvarez, M. C. & Flores-Palacios, A. Host preference and host limitation of vascular epiphytes in a tropical dry forest of central Mexico. J. Trop. Ecol. 26(6), 563–570. https://doi.org/10.1017/S0266467410000349 (2010).

    Article 

    Google Scholar 

  • 82.

    Barrett, S. C. H. & Kohn, J. R. Genetic and evolutionary consequences of small population size in plants: Implications for conservation. In Genetics and Conservation of Rare Plants (eds Falk, D. A. & Holsinge, K. E.) 3–30 (Oxford University Press, 1991).

    Google Scholar 

  • 83.

    Nathan, R., Horn, H. S., Chave, J. & Levin, S. A. Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In Seed Dispersal and Frugivory-Ecologie, Evolution, Conservation 69–82 (2002). https://doi.org/10.1079/9780851995250.0069

  • 84.

    Cousens, R. et al. Dispersal in Plants. A Population Perspective (Oxford University Press, 2008).

    Book 

    Google Scholar 

  • 85.

    Snäll, T., Ehrlén, J. & Rydin, H. Colonization-extinction dynamics of an epiphyte metapopulation in a dynamic landscape. Ecology 86(1), 106–115 (2005).

    Article 

    Google Scholar 

  • 86.

    Ruiz-Cordova, J. P., Toledo-Hernández, V. H. & Flores-Palacios, A. The effect of substrate abundance in the vertical stratification of bromeliad epiphytes in a tropical dry forest (Mexico). Flora Morphol. Distrib. Funct. Ecol. Plants 209(8), 375–384. https://doi.org/10.1016/j.flora.2014.06.003 (2014).

    Article 

    Google Scholar 

  • 87.

    Flores-Palacios, A., Bustamante-Molina, A. B., Corona-López, A. M. & Valencia-Díaz, S. Seed number, germination and longevity in wild dry forest Tillandsia species of horticultural value. Scientia Hortic. 187, 72–79 (2015).

    Article 

    Google Scholar 

  • 88.

    Goodman, R., & Herold, M. (2014). Why maintaining tropical forests is essential and urgent for a stable climate. Center for Global Development Working Paper, (385).

  • 89.

    Seymour, F. & Busch, J. Why Forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change (Brookings Institution Press, 2016).

    Google Scholar 

  • 90.

    Stephenson, N. L. et al. Rate of tree carbon accumulation increases continuously with tree size. Nature 507(7490), 90–93 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 91.

    Tel-Zur, N., Abbo, S., Myslabodsky, D. & Mizrahi, Y. Modified CTAB procedure for DNA isolation from epiphytic cacti of genera Hylocereus and Selenicereus (Cactaceae). Plant Mol. Biol. Rep. 17, 249–254 (1999).

    CAS 
    Article 

    Google Scholar 

  • 92.

    Chaves, C. J. N., Aoki-Gonçalves, F., Leal, B. S. S., Rossatto, D. R. & Palma-Silva, C. Transferability of nuclear microsatellite markers to the atmospheric bromeliads Tillandsia recurvata and T. aeranthos (Bromeliaceae). Braz. J. Bot. 41, 931–935. https://doi.org/10.1007/s40415-018-0494-4 (2018).

    Article 

    Google Scholar 

  • 93.

    Keenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. DiveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12067 (2013).

    Article 

    Google Scholar 

  • 94.

    Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462 (1995).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 95.

    Nei, M. Genetic distances between populations. Am. Nat. 106, 283–292 (1972).

    Article 

    Google Scholar 

  • 96.

    Edwards, A. W. F. Distance between populations on the basis of gene frequencies. Biometrics 27, 873–881 (1971).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 97.

    Reynolds, J. B., Weir, B. S. & Cockerham, C. C. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105, 767–779 (1983).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 98.

    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ https://doi.org/10.7717/peerj.281 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Paradis, E. pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 100.

    Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491. https://doi.org/10.1007/s00424-009-0730-7 (1992).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    Loiselle, B. A., Sork, V. L., Nason, J. & Graham, C. Spatial genetic structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am. J. Bot. 82(11), 1420–1425 (1995).

    Article 

    Google Scholar 

  • 102.

    Bailleul, D., Stoeckel, S. & Arnaud-Haond, S. RClone: A package to identify MultiLocus Clonal Lineages and handle clonal data sets in r. Methods Ecol. Evol. 7(8), 966–970. https://doi.org/10.1111/2041-210X.12550 (2016).

    Article 

    Google Scholar 

  • 103.

    Harrison, S. et al. Beta diversity on geographic gradients in Britain. J. Anim. Ecol. 61(1), 151–158 (1992).

    Article 

    Google Scholar 

  • 104.

    Jost, L. Partitioning diversity into independent alpha and beta components. Ecology 88(10), 2427–2439. https://doi.org/10.1890/07-1861.1 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 105.

    Charney, N. & Record, S. Vegetarian: Jost diversity measures for community data. https://cran.r-project.org/web/packages/vegetarian/index.html (2012). Accessed Jul 2018.

  • 106.

    Wilensky, U. NetLogo (Northwestern University, Center for Connected Learning and Computer-Based Modeling, 1999).

    Google Scholar 

  • 107.

    Grimm, V. et al. A standard protocol for describing individual-based and agent-based models. Ecol. Model. 198(1–2), 115–126. https://doi.org/10.1016/j.ecolmodel.2006.04.023 (2006).

    Article 

    Google Scholar 

  • 108.

    Grimm, V. et al. The ODD protocol: A review and first update. Ecol. Model. 221(23), 2760–2768. https://doi.org/10.1016/j.ecolmodel.2010.08.019 (2010).

    Article 

    Google Scholar 

  • 109.

    Kooijman, B. & Kooijman, S. A. L. M. Dynamic Energy Budget Theory for Metabolic Organisation (Cambridge University Press, 2010).

    Google Scholar 

  • 110.

    Sibly, R. M. et al. Representing the acquisition and use of energy by individuals in agent-based models of animal populations. Methods Ecol. Evol. 4(2), 151–161 (2013).

    Article 

    Google Scholar 

  • 111.

    Johnston, A. S. A., Hodson, M. E., Thorbek, P., Alvarez, T. & Sibly, R. M. An energy budget agent-based model of earthworm populations and its application to study the effects of pesticides. Ecol. Model. 280, 5–17 (2014).

    CAS 
    Article 

    Google Scholar 

  • 112.

    van der Vaart, E., Johnston, A. S. A. & Sibly, R. M. Predicting how many animals will be where: How to build, calibrate and evaluate individual-based models. Ecol. Model. 326, 113–123 (2016).

    Article 

    Google Scholar 

  • 113.

    Garza, J. C. & Williamson, E. G. Detection of reduction in population size using data from microsatellite loci. Mol. Ecol. 10, 305–318 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 114.

    Excoffier, L., Laval, G. & Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1, 47–50 (2005).

    CAS 
    Article 

    Google Scholar 

  • 115.

    Csilléry, K., François, O. & Blum, M. G. abc: An R package for approximate Bayesian computation (ABC). Methods Ecol. Evol. 3(3), 475–479 (2012).

    Article 

    Google Scholar 

  • 116.

    Pastur, G. M., Lencinas, M. V., Cellini, J. M. & Mundo, I. Diameter growth: Can live trees decrease?. Forestry 80(1), 83–88. https://doi.org/10.1093/forestry/cpl047 (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Author Correction: Meeting frameworks must be even more inclusive

    Identifying thresholds in the impacts of an invasive groundcover on native vegetation