in

Degree day-based model predicts pink bollworm phenology across geographical locations of subtropics and semi-arid tropics of India

  • 1.

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl. Acad. Sci. U. S. A. 108(44), 17905–17909 (2011).

    ADS  CAS  Article  Google Scholar 

  • 2.

    Hodgson, J. A. et al. Predicting insect phenology across space and time. Glob. Change Biol. 17, 1289–1300 (2011).

    ADS  Article  Google Scholar 

  • 3.

    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).

    ADS  CAS  Article  Google Scholar 

  • 4.

    IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151.

  • 5.

    Ge, Q. S., Wang, H. J., Rutishauser, T. & Dai, J. H. Phenological response to climate change in China: a meta-analysis. Glob. Chang. Biol. 21, 265–274 (2015).

    ADS  Article  Google Scholar 

  • 6.

    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).

    ADS  CAS  Article  Google Scholar 

  • 7.

    Berzitis, E. A., Minigan, J. N., Hellett, R. H. & Newman, J. A. Climate and host plant availability impact the future distribution of the bean leaf beetle (Cerotoma trifurcata). Glob. Change Biol. 20, 2778–2792 (2014).

    ADS  Article  Google Scholar 

  • 8.

    Fand, B. B., Tonnang, H. E. Z., Bal, S. K. & Dhawan, A. K. Shift in the Manifestations of Insect Pests Under Predicted Climatic Change Scenarios: Key Challenges and Adaptation Strategies. In Advances in Crop Environment Interaction (eds Bal, S. et al.). (Springer, Singapore, 2018).

  • 9.

    Cayton, H. L., Haddad, N. M., Gross, K., Diamond, S. E. & Ries, L. Do growing degree days predict phenology across butterfly species?. Ecology 96(6), 1473–1479 (2015).

    Article  Google Scholar 

  • 10.

    Arnold, C. Y. The determination and significance of the base temperature in a linear heat unit system. Am. Soc. Hort. Sci. 74, 430–445 (1959).

    Google Scholar 

  • 11.

    Higley, L. G., Pedigo, L. P. & Ostile, K. R. DEGDAY: a program for calculating degree–days, and assumptions behind the degreeday approach. Environ. Entomol. 15, 999–1016 (1986).

    Article  Google Scholar 

  • 12.

    Campbell, A., Frazer, B. D., Gilbert, N., Gutierrez, A. P. & Mackauer, M. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11, 431–438 (1974).

    Article  Google Scholar 

  • 13.

    Stinner, R. E., Gutierrez, A. P. & Butler, G. D. An algorithm for temperaturedependent growth rate simulation. Can. Entomol. 106, 519–524 (1974).

    Article  Google Scholar 

  • 14.

    Sharpe, P. J. H. & DeMichele, D. W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 64, 649–670 (1977).

    CAS  Article  Google Scholar 

  • 15.

    Huber, R. T. Heat units and insect population prediction. In Proceedings of Beltwide cotton Production Mechanization Conference, 6–7 Jan, 1982. Las Vegas (1982).

  • 16.

    Peddu, H., Fand, B. B., Sawai, H. R. & Lave, N. V. Estimation and validation of developmental thresholds and thermal requirements for cotton pink bollworm Pectinophora gossypiella. Crop Prot. 127, 104984. https://doi.org/10.1016/j.cropro.2019.104984 (2020).

    CAS  Article  Google Scholar 

  • 17.

    Beasley, C. A. & Adams, C. J. Fieldbased, degreeday model for pink bollworm (Lepidoptera: Gelechiidae) development. J. Econ. Entomol. 89, 881–890 (1996).

    Article  Google Scholar 

  • 18.

    Trnka, M. et al. European corn borer life stage model: regional estimates of pest development and spatial distribution under present and future climate. Ecol. Model. 207, 61–84 (2007).

    Article  Google Scholar 

  • 19.

    Fand, B. B., Tonnang, H. E. Z., Kumar, M., Kamble, A. L. & Bal, S. K. A temperature-based phenology model for predicting development, survival and population growth potential of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Prot. 55, 98–108 (2014).

    Article  Google Scholar 

  • 20.

    Fand, B. B., Sul, N. T., Bal, S. K. & Minhas, P. S. Temperature Impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS ONE 10(4), e0124682 (2015).

    Article  Google Scholar 

  • 21.

    Sporleder, M., Simon, R., Juarez, H. & Kroschel, J. Regional and seasonal forecasting of the potato tuber moth using a temperature-driven phenology model linked with geographic information systems. In Integrated Pest Management for the Potato Tuber Moth, Phthorimaea operculella Zeller – A Potato Pest of Global Importance Zeller – A Potato Pest of Global Importance (eds Kroschel, J. & Lacey, L.) 15–30 (Margraf Publishers, Weikersheim (Germany), 2008).

    Google Scholar 

  • 22.

    Khadioli, N. et al. Effect of temperature on the phenology of Chilo partellus (Swinhoe) (Lepidoptera, Crambidae): simulation and visualization of the potential future distribution of C. partellus in Africa under warmer temperatures through the development of life-table parameters. Bulle Entomol. Res. 104, 809–822 (2014).

    CAS  Article  Google Scholar 

  • 23.

    Chimel, S. M. & Wilson, M. C. Estimation of the lower and upper developmental threshold temperatures and duration of the nymphal stages of the meadow spittlebug, Philaenus spumarius. Environ. Entomol. 8, 682–685 (1979).

    Article  Google Scholar 

  • 24.

    Henneberry, T. J. & Hutchison, W. D. Tobacco budworm (Lepidoptera: Noctuidae): phenology of fall and summer diapausing and degree-day requirements for larval development and adult emergence. Environ. Entomol. 18, 563–569 (1989).

    Article  Google Scholar 

  • 25.

    Sevacherian, V., Toscano, N. C., Van Steenwyk, R. A., Sharma, R. K. & Sanders, R. R. Forecasting pink bollworm emergence by thermal summation. Environ. Entomol. 6, 545–546 (1977).

    Article  Google Scholar 

  • 26.

    Zalom, F. G. et al. Degreedays: the calculation and use of heat units in pest management. University of California DANR Leaflet 21373. (1983).

  • 27.

    Allen, J. C. A modified sine wave method for calculating degree days. Environ. Ent. 5, 388–396 (1976).

    Article  Google Scholar 

  • 28.

    Fry, K. E. Heat-unit calculations in cotton cropand insect models. USDA-ARS AAT-W-23. Agricultural Research Service (Western Region), U. S. Department of Agriculture, Oakland, CA. (1983).

  • 29.

    Pruess, K. P. Day-degree methods for pest management. Environ. Entomol. 12, 613–619 (1983).

    Article  Google Scholar 

  • 30.

    CABI. (2020). Invasive species compendium: Pectinophora gossypiella (pink bollworm). https://www.cabi.org/isc/datasheet/39417#70AF7142-7A8B-4F36-A0BA-4F14FA270EED. Accessed 29 April 2020.

  • 31.

    Naik, V. C. B. N., Dhara Jothi, B., Dabhade, P. L. & Kranthi, S. Pink Boll worm Pectinophora gossypiella (saunders) infestation on Bt and Non Bt Hybrids in India in 2011–2012. Cotton Res. J. 6, 37–40 (2014).

    Google Scholar 

  • 32.

    Fand, B. B. et al. Widespread infestation of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechidae) on Bt cotton in Central India: a new threat and concerns for cotton production. Phytoparasitica 47, 313–325 (2019).

    CAS  Article  Google Scholar 

  • 33.

    Huber, R. T., Moore, L. & Hoffman, M. P. Feasibility study of widearea pheromone trapping of male pink bollworm moths in a cotton insect pest management program. J. Econ. Entomol. 72, 222–227 (1979).

    Article  Google Scholar 

  • 34.

    Hutchinson, W. D., Butler, G. D. Jr. & Martin, J. M. Age–specific developmental times for pink bollworm (Lepidoptera: Gelechiidae): three age classes of eggs, five larval instars, and pupae. Ann. Entomol. Soc. Am. 79, 482–487 (1986).

    Article  Google Scholar 

  • 35.

    Bryant, S. R., Thomas, C. D. & Bale, J. S. The influence of thermal ecology on the distribution of three nymphalid butterflies. J. Appl. Ecol. 39, 43–55 (2002).

    Article  Google Scholar 

  • 36.

    Gergis, M. F., Soliman, M. A., Moftah, E. A. & Naby, A. A. Temperature dependent development and functional responses of pink bollworm Pectinophora gossypiella (Saund.). Assiut. J. Agric. Sci. 21, 119–126 (1990).

    Google Scholar 

  • 37.

    Yones, M. S., Rahman, H. A., AbouHadid, A. F., Arafat, S. M. & Dahi, H. F. Heat unit requirements for development of the pink bollworm, Pectinophora gossypiella (Saunds.). Egypt Acad. J. Biol. Sci. 4(1), 115–122 (2011).

    Google Scholar 

  • 38.

    El-Lebody, K. A., Mostafa, H. Z. & Rizk, A. M. Study the biology and thermal requirements of Pectinophora gossypiella (Saunders), infestated cotton bolls var giza 90, under natural conditions. Egypt. Acad. J. Biol. Sci. 8(3), 115–125 (2015).

    Google Scholar 

  • 39.

    Higley, L. G. & Peterson, R. K. D. Initiating sampling programs. In Handbook of Sampling Methods for Arthropods in Agriculture (eds Pedigo, L. P. & Buntin, G. D.) 119–136 (CRC, Boca Raton, FL, 1994).

    Google Scholar 

  • 40.

    Nath, V. & Agarwal, R. A. Insect pests of crops and their control. Bharati Publications, Delhi 1:139 (1982).

  • 41.

    Sevacherian, V. & El-Zik, K. M. A slide rule for cotton crop and insect management. Univ. Calif. Div. Agric. Sci. Coop. Ext. Leaf. 21361 (1983).

  • 42.

    Klein, Z. & Applebaum, S. W. pink bollworm (Pectinophora gossypiella) lifecycle and diapause induction in Israel 1990. Hassadeh 71(2), 210–213 (1990).

    Google Scholar 

  • 43.

    Kranthi, K. R. Bt Cotton: Questions and Answers 70 (Indian Society for Cotton Improvement (ISCI), Mumbai, India, 2012).

    Google Scholar 

  • 44.

    Kranthi, K. R. Pink bollworm strikes Bt cotton. Cotton Stat. News 35, 1–6 (2015).

    Google Scholar 

  • 45.

    Jha, R. C. & Bisen, R. S. Effect of climatic factors on the seasonal incidence of thepink bollworm on cotton crop. Annu. Plant Prot. Sci. 2, 12–14 (1994).

    Google Scholar 

  • 46.

    Sarwar, M. Biological parameters of pink bollworm Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae): a looming threat for cotton and its eradication opportunity. Int. J. Res. Agric. For. I7, 25–36 (2017).

    Google Scholar 

  • 47.

    Ellsworth, P., et al. 2006. Pink Bollworm Management. Newsletter of the Pink Bollworm Action Committee. A Project of The Cotton Foundation Produced by the University of Arizona – Cooperative Extension, 1(2): 1–2.

  • 48.

    Edwards, M. & Richardson, A. J. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430, 881–884 (2004).

    ADS  CAS  Article  Google Scholar 

  • 49.

    Snyder, R. L. 2002. DegDay.xls, Version 1.01. University of California Department of Land, Air and Water Resources, Atmospheric Science, Davis, California, USA. http://biomet.ucdavis.edu/DegreeDays/DegDay.htm. Accessed 10 Jan 2018.

  • 50.

    ICAR-CICR. 2006. Approved Package of practices for Cotton: Maharashtra State. ICAR-Central Institute for Cotton Research, Nagpur, Maharashtra, India. 440 010. http://www.cicr.org.in/pop/mh.pdf. Accessed 22 April 2020.

  • 51.

    Fife, L. C. Factors influencing pink bollworm pupation and emergence from overwintering larvae in central Texas. J. Econ. Entomol. 54, 908–918 (1961).

    Article  Google Scholar 

  • 52.

    Fand, B. B. et al. A simple and low-cost laboratory rearing technique for cotton pink bollworm, Pectinophora gossypiella (Suanders) (Lepidoptera: Gelechidae) using detached green bolls of cotton. Phytoparasitica https://doi.org/10.1007/s12600-019-00779-2 (2020).

    Article  Google Scholar 

  • 53.

    Box, G. E. P. & Jenkins, G. M. Time Series Analysis: Forecasting and Control (Holden-Day, San Francisco, 1970).

    Google Scholar 


  • Source: Ecology - nature.com

    Scientists discover slimy microbes that may help keep coral reefs healthy

    Multiple life-stage inbreeding depression impacts demography and extinction risk in an extinct-in-the-wild species