in

Demographic effects of interacting species: exploring stable coexistence under increased climatic variability in a semiarid shrub community

  • 1.

    Jongejans, E., de Kroon, H., Tuljapurkar, S. & Shea, K. Plant populations track rather than buffer climate fluctuations. Ecol. Lett. 13, 736–743 (2010).

    PubMed  Article  Google Scholar 

  • 2.

    Tenhumberg, B., Crone, E. E., Ramula, S. & Tyre, A. J. Time-lagged effects of weather on plant demography: Drought and Astragalus scaphoides. Ecology 99, 915–925 (2018).

    PubMed  Article  Google Scholar 

  • 3.

    Boyce, M. S., Haridas, C. V., Lee, C. T. & the NCEAS Stochastic Demography Working Group. Demography in an increasingly variable world. Trends Ecol. Evol. 21, 141–148 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Törang, P., Ehrlén, J. & Ågren, J. Linking environmental and demographic data to predict future population viability of a perennial herb. Oecologia 163, 99–109 (2010).

    ADS  PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Article  Google Scholar 

  • 6.

    García-Cervigón, A. I., Camarero, J. J., Cueva, E., Espinosa, C. I. & Escudero, A. Climate seasonality and tree growth strategies in a tropical dry forest. J. Veg. Sci. 31, 266–280 (2020).

    Article  Google Scholar 

  • 7.

    Adler, P. B., HilleRisLambers, J., Kyriakidis, P. C., Guan, Q. & Levine, J. M. Climate variability has a stabilizing effect on the coexistence of prairie grasses. Proc. Natl. Acad. Sci. U.S.A. 103, 12793–12798 (2006).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 8.

    Wasonga, O., Gabiri, G., MacOpiyo, L., Mburu, J. & Majaliwa, J. G. M. Land cover and soil properties influence on forage quantity in a semiarid region in East Africa. Appl. Environ. Soil Sci. 2019, 6874268 (2019).

    Google Scholar 

  • 9.

    Zheng, X. X., Liu, G. H., Fu, B. J., Jin, T. T. & Liu, Z. F. Effects of biodiversity and plant community composition on productivity in semiarid grasslands of Hulunbeir, Inner Mongolia, China. Ann. N. Y. Acad. Sci. 1195, E52–E64 (2010).

    PubMed  Article  Google Scholar 

  • 10.

    Saiz, H. & Alados, C. L. Changes in semi-arid plant species associations along a livestock grazing gradient. PLoS ONE 9, e91478 (2012).

    Google Scholar 

  • 11.

    Chacón-Labella, J., de la Cruz, M., Pescador, D. S. & Escudero, A. Individual species affect plant traits structure in their surroundings: Evidence of functional mechanisms of assembly. Oecologia 180, 975–987 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 12.

    Araújo, M. B. & Luoto, M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 16, 743–753 (2007).

    Article  Google Scholar 

  • 13.

    Nicolè, F., Dahlgren, J. P., Vivat, A., Till-Bottraud, I. & Ehrlén, J. Interdependent effects of habitat quality and climate on population growth of an endangered plant. J. Ecol. 99, 1211–1218 (2011).

    Article  Google Scholar 

  • 14.

    McIntire, E. J. B. & Fajardo, A. Facilitation as a ubiquitous driver of biodiversity. New Phytol. 201, 403–416 (2014).

    PubMed  Article  Google Scholar 

  • 15.

    Mihoč, M. A. K. et al. Soil under nurse plants is always better than outside: A survey on soil amelioration by a complete guild of nurse plants across a long environmental gradient. Plant Soil 408, 31–41 (2016).

    Article  CAS  Google Scholar 

  • 16.

    Maestre, F. T., Valladares, F. & Reynolds, J. F. Is the change of plant–plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 93, 748–757 (2005).

    Article  Google Scholar 

  • 17.

    Gustaffson, C. & Ehrlén, J. Effects of intraspecific and interspecific density on the demography of a perennial herb, Sanicula europaea. Oikos 100, 317–324 (2003).

    Article  Google Scholar 

  • 18.

    García-Cervigón, A. I., Iriondo, J. M., Linares, J. C. & Olano, J. M. Disentangling facilitation along the life cycle: Impacts of plant–plant interactions at vegetative and reproductive stages in a Mediterranean forb. Front. Plant Sci. 7, 129 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  • 19.

    Miriti, M. N. Ontogenetic shift from facilitation to competition in a desert shrub. J. Ecol. 94, 973–979 (2006).

    Article  Google Scholar 

  • 20.

    Soliveres, S. L., DeSoto, L., Maestre, F. T. & Olano, J. M. Spatio-temporal heterogeneity in abiotic factors modulate multiple ontogenetic shifts between competition and facilitation. Perspect. Plant Ecol. Evol. Syst. 12, 227–234 (2010).

    Article  Google Scholar 

  • 21.

    Dahlgren, J. P. & Ehrlén, J. Linking environmental variation to population dynamics of a forest herb. J. Ecol. 97, 666–674 (2009).

    Article  Google Scholar 

  • 22.

    Griffith, A. B. Positive effects of native shrubs on Bromus tectorum demography. Ecology 91, 141–154 (2010).

    PubMed  Article  Google Scholar 

  • 23.

    Tenhumberg, B., Suwa, T., Tyre, A. J., Russell, F. L. & Louda, S. M. Integral projection models show exotic thistle is more limited than native thistle by ambient competition and herbivory. Ecosphere 6, 69 (2015).

    Article  Google Scholar 

  • 24.

    García-Algarra, J., Galeano, J., Pastor, J. M., Iriondo, J. M. & Ramasco, J. J. Rethinking the logistic approach for population dynamics of mutualistic interactions. J. Theoret. Biol. 363, 332–343 (2014).

    MathSciNet  MATH  Article  Google Scholar 

  • 25.

    Adler, P. B., Dalgleish, H. J. & Ellner, S. P. Forecasting plant community impacts of climate variability and change: When do competitive interactions matter?. J. Ecol. 100, 478–487 (2012).

    Article  Google Scholar 

  • 26.

    Chu, C. & Adler, P. B. Large niche differences emerge at the recruitment stage to stabilize grassland coexistence. Ecol. Monogr. 85, 373–392 (2015).

    Article  Google Scholar 

  • 27.

    Easterling, M. R., Ellner, S. P. & Dixon, P. M. Size-specific sensitivity: Applying a new structured population model. Ecology 81, 694–708 (2000).

    Article  Google Scholar 

  • 28.

    Ellner, S. P. & Rees, M. Integral projection models for species with complex demography. Am. Nat. 167, 410–428 (2006).

    PubMed  Article  Google Scholar 

  • 29.

    Rees, M. & Ellner, S. P. Integral projection models for populations in temporally varying environments. Ecol. Monogr. 79, 575–594 (2009).

    Article  Google Scholar 

  • 30.

    Williams, J. L., Jacquemyn, H., Ochocki, B. M., Brys, R. & Miller, T. E. X. Life history evolution under climate change and its influence on the population dynamics of a long-lived plant. J. Ecol. 103, 798–808 (2015).

    Article  Google Scholar 

  • 31.

    IPCC. Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014).

  • 32.

    Allen, C. D. & Breshears, D. D. Drought-induced shift of a forest-woodland ecotone: Rapid landscape response to climate variation. Proc. Natl. Acad. Sci. U.S.A. 95, 14839–14842 (1998).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Olano, J. M., Eugenio, M. & Escudero, A. Site effect is stronger than species identity in driving demographic responses of Helianthemum (Cistaceae) shrubs in gypsum environments. Am. J. Bot. 98, 1–8 (2011).

    Article  Google Scholar 

  • 34.

    Arroyo-Cosultchi, G., Golubov, J. & Mandujano, M. C. Pulse seedling recruitment on the population dynamics of a columnar cactus: Effect of an extreme rainfall event. Acta Oecol. 71, 52–60 (2016).

    ADS  Article  Google Scholar 

  • 35.

    Quintana-Ascencio, P. F., Caballero, I., Olano, J. M., Escudero, A. & Albert, M. J. Does habitat structure matter? Spatially explicit population modeling of an Iberian gypsum endemic. Popul. Ecol. 51, 317–328 (2009).

    Article  Google Scholar 

  • 36.

    Eugenio, M., Olano, J. M., Ferrandis, P., Martínez-Duro, E. & Escudero, A. Population structure of two dominant gypsophyte shrubs through a secondary plant succession. J. Arid Environ. 76, 30–35 (2012).

    ADS  Article  Google Scholar 

  • 37.

    Martínez, I. et al. Small-scale patterns of abundance of mosses and lichens forming biological soil crusts in two semi-arid gypsum environments. Aust. J. Bot. 54, 339–348 (2006).

    Article  Google Scholar 

  • 38.

    Sánchez, A. M., Alonso-Valiente, P., Albert, M. J. & Escudero, A. How might edaphic specialists in gypsum islands respond to climate change? Reciprocal sowing experiment to infer local adaptation and phenotypic plasticity. Ann. Bot. 120, 135–146 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 39.

    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 40.

    Escudero, A., Somolinos, R. C., Olano, J. M. & Rubio, A. Factors controlling the establishment of Helianthemum squamatum (L.) Dum., an endemic gypsophite of semi-arid Spain. J. Ecol. 87, 290–302 (1999).

    Article  Google Scholar 

  • 41.

    Escudero, A., Iriondo, J. M., Olano, J. M., Rubio, A. & Somolinos, R. Factors affecting establishment of a gypsophyte: The case of Lepidium subulatum (Brassicaceae). Am. J. Bot. 87, 861–871 (2000).

    CAS  PubMed  Article  Google Scholar 

  • 42.

    Aragón, C. F., Albert, M. J., Giménez-Benavides, L., Luzuriaga, A. L. & Escudero, A. Environmental scales on the reproduction of a gypsophyte: A hierarchical approach. Ann. Bot. 99, 519–527 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  • 43.

    Caballero, I., Olano, J. M., Loidi, J. & Escudero, A. A model for small-scale seed bank and standing vegetation connection along time. Oikos 117, 1788–1795 (2008).

    Article  Google Scholar 

  • 44.

    de la Cruz, M., Romão, R. L., Escudero, A. & Maestre, F. T. Where do seedlings go? A spatio-temporal analysis of seedling mortality in a semi-arid gypsophyte. Ecography 31, 720–730 (2008).

    Article  Google Scholar 

  • 45.

    Tye, M. R. et al. Assessing seed and microsite limitation on population dynamics of a gypsophyte through experimental soil crust disturbance and seed addition. Plant Ecol. 218, 595–607 (2017).

    Article  Google Scholar 

  • 46.

    Olano, J. M., Caballero, I., Loidi, J. & Escudero, A. Prediction of plant cover from seed bank analysis in a semi-arid plant community on gypsum. J. Veg. Sci. 16, 215–222 (2005).

    Article  Google Scholar 

  • 47.

    Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS ONE 7, e41270 (2012).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 48.

    Peralta, A. M. L., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).

    CAS  Article  Google Scholar 

  • 49.

    Wilcock, C. & Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 7, 270–277 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 50.

    Watson, I. W., Westoby, M. & Holm, A. M. Continuous and episodic components of demographic change in arid zone shrubs: Models of two Eremophila species from Western Australia compared with published data on other species. J. Ecol. 85, 833–846 (1997).

    Article  Google Scholar 

  • 51.

    Schwinning, S., Sala, O. E., Loik, M. E. & Ehleringer, J. R. Thresholds, memory, and seasonality: Understanding pulse dynamics in arid/semi-arid ecosystems. Oecologia 141, 191–193 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 52.

    Wiegand, K., Jeltsch, F. & Ward, D. Minimum recruitment frequency in plants with episodic recruitment. Oecologia 141, 363–372 (2004).

    ADS  PubMed  Article  Google Scholar 

  • 53.

    Caballero, I., Olano, J. M., Escudero, A. & Loidi, J. Seed bank structure along a semi-arid gypsum gradient in central Spain. J. Arid Environ. 55, 287–299 (2003).

    ADS  Article  Google Scholar 

  • 54.

    Olano, J. M., Caballero, I. & Escudero, A. Soil seed bank recovery occurs more rapidly than expected in semi-arid Mediterranean gypsum vegetation. Ann. Bot. 109, 299–307 (2012).

    CAS  PubMed  Article  Google Scholar 

  • 55.

    Holzapfel, C. & Mahall, B. E. Bidirectional facilitation and interference between shrubs and annuals in the Mojave Desert. Ecology 80, 1747–1761 (1999).

    Article  Google Scholar 

  • 56.

    Schöb, C., Prieto, I., Armas, C. & Pugnaire, F. I. Consequences of facilitation: One plant’s benefit is another plant’s cost. Funct. Ecol. 28, 500–508 (2014).

    Article  Google Scholar 

  • 57.

    Chesson, R. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Article  Google Scholar 

  • 58.

    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).

    PubMed  Article  Google Scholar 

  • 59.

    Shipley, B. et al. Reinforcing foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).

    ADS  PubMed  Article  Google Scholar 

  • 60.

    Lankau, R. A. & Strauss, S. Y. Newly rare or newly common: Evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. Evol. Appl. 4, 338–353 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  • 61.

    Escavy, J. I., Herrero, M. J. & Arribas, M. E. Gypsum resources of Spain: Temporal and spatial distribution. Ore Geol. Rev. 49, 72–84 (2012).

    Article  Google Scholar 

  • 62.

    Monturiol, F. & Alcalá-del-Olmo, L. Mapa de Asociaciones de Suelos de la Comunidad de Madrid. Escala 1:200.000 (Consejo Superior de Investigaciones Científicas, Madrid, 1990).

    Google Scholar 

  • 63.

    Guerrero-Campo, J., Palacio, S., Pérez-Rontome, C. & Montserrat-Martí, G. Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Ann. Bot. 98, 439–447 (2006).

    PubMed  PubMed Central  Article  Google Scholar 

  • 64.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear Mixed-Effects Models Using Eigen and S4. R Package Version 1.1–7. http://CRAN.R-project.org/package=lme4. Accessed June 2018 (2014).

  • 65.

    Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–120. http://CRAN.R-project.org/package=nlme. Accessed June 2018 (2015).

  • 66.

    Metcalf, C. J. E., McMahon, S. M., Salguero-Gómez, R. & Jongejans, E. IPMpack: An R package for integral projection models. Methods Ecol. Evol. 4, 195–200 (2013).

    Article  Google Scholar 

  • 67.

    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed June 2018 (2015).


  • Source: Ecology - nature.com

    Scientists as engaged citizens

    New fiber optic temperature sensing approach to keep fusion power plants running