Bik, H. M. et al. Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol. Evol. 27(4), 233–243 (2012).
Google Scholar
Deiner, K. et al. Environmental DNA metabarcoding: Transforming how we survey animal and plant communities. Mol. Ecol. 26(21), 5872–5895 (2017).
Google Scholar
Porter, T. M. & Hajibabaei, M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol. Ecol. 27(2), 313–338 (2018).
Google Scholar
Arulandhu, A. J. et al. Development and validation of a multi-locus DNA metabarcoding method to identify endangered species in complex samples. GigaScience 6(10), gix080 (2017).
Google Scholar
Raclariu, A. C., Heinrich, M., Ichim, M. C. & de Boer, H. Benefits and limitations of DNA barcoding and metabarcoding in herbal product authentication. Phytochem. Anal. 29(2), 123–128 (2018).
Google Scholar
Staats, M. et al. Advances in DNA metabarcoding for food and wildlife forensic species identification. Anal. Bioanal. Chem. 408(17), 4615–4630 (2016).
Google Scholar
Comtet, T., Sandionigi, A., Viard, F. & Casiraghi, M. DNA (meta)barcoding of biological invasions: A powerful tool to elucidate invasion processes and help managing aliens. Biol. Invasions 17(3), 905–922 (2015).
Google Scholar
Piper, A. M. et al. Prospects and challenges of implementing DNA metabarcoding for high-throughput insect surveillance. GigaScience 8(8), giz092 (2019).
Google Scholar
Tedersoo, L., Drenkhan, R., Anslan, S., Morales-Rodriguez, C. & Cleary, M. High-throughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Mol. Ecol. Resour. 19(1), 47–76 (2019).
Google Scholar
Andújar, C. et al. Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol. Ecol. 27(1), 146–166 (2018).
Google Scholar
Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8(10), 1265–1275 (2017).
Google Scholar
Brown, E. A., Chain, F. J. J., Zhan, A., MacIsaac, H. J. & Cristescu, M. E. Early detection of aquatic invaders using metabarcoding reveals a high number of non-indigenous species in Canadian ports. Divers. Distrib. 22(10), 1045–1059 (2016).
Google Scholar
Hebert, P. D. N., Ratnasingham, S. & deWaard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. B Biol. Sci. 270(Suppl 1), S96–S99 (2003).
Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & deWaard, J. R. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270(15), 313–321 (2003).
Google Scholar
Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14(6), 1160–1170 (2014).
Google Scholar
Yu, D. W. et al. Biodiversity soup: Metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol. Evol. 3(4), 613–623 (2012).
Google Scholar
Brandon-Mong, G.-J. et al. DNA metabarcoding of insects and allies: An evaluation of primers and pipelines. Bull. Entomol. Res. 105(6), 717–727 (2015).
Google Scholar
Freeland, J. R. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA. Genome 60(4), 358–374 (2016).
Google Scholar
Marquina, D., Andersson, A. F. & Ronquist, F. New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Mol. Ecol. Resour. 19(1), 90–104 (2019).
Google Scholar
Epanchin-Niell, R. S., Haight, R. G., Berec, L., Kean, J. M. & Liebhold, A. M. Optimal surveillance and eradication of invasive species in heterogeneous landscapes. Ecol. Lett. 15(8), 803–812 (2012).
Google Scholar
Batovska, J. et al. Effective mosquito and arbovirus surveillance using metabarcoding. Mol. Ecol. Resour. 18, 32–40 (2017).
Google Scholar
Liebhold, A. M. et al. Eradication of invading insect populations: From concepts to applications. Annu. Rev. Entomol. 61, 335–352 (2016).
Google Scholar
Lamb, P. D. et al. How quantitative is metabarcoding: A meta-analytical approach. Mol. Ecol. 28(2), 420–430 (2019).
Google Scholar
Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10(7), e0130324 (2015).
Google Scholar
Krehenwinkel, H. et al. Estimating and mitigating amplification bias in qualitative and quantitative arthropod metabarcoding. Sci. Rep. 7(1), 17668 (2017).
Google Scholar
Piñol, J., Senar, M. A. & Symondson, W. O. C. The choice of universal primers and the characteristics of the species mixture determine when DNA metabarcoding can be quantitative. Mol. Ecol. 28(2), 407–419 (2019).
Google Scholar
Ashfaq, M. & Hebert, P. D. N. DNA barcodes for bio-surveillance: Regulated and economically important arthropod plant pests. Genome 59(11), 933–945 (2016).
Google Scholar
De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: Application to omnivorous diet. Mol. Ecol. Resour. 14(2), 306–323 (2014).
Google Scholar
Hauck, L. L., Weitemier, K. A., Penaluna, B. E., Garcia, T. S. & Cronn, R. Casting a broader net: Using microfluidic metagenomics to capture aquatic biodiversity data from diverse taxonomic targets. Environ. DNA 1(3), 251–267 (2019).
Google Scholar
Zhang, G. K., Chain, F. J. J., Abbott, C. L. & Cristescu, M. E. Metabarcoding using multiplexed markers increases species detection in complex zooplankton communities. Evol. Appl. 11(10), 1901–1914 (2018).
Google Scholar
Costello, M. et al. Characterization and remediation of sample index swaps by non-redundant dual indexing on massively parallel sequencing platforms. BMC Genomics 19(1), 332 (2018).
Google Scholar
MacConaill, L. E. et al. Unique, dual-indexed sequencing adapters with UMIs effectively eliminate index cross-talk and significantly improve sensitivity of massively parallel sequencing. BMC Genomics 19(1), 30 (2018).
Google Scholar
Bengtsson-Palme, J. et al. Strategies to improve usability and preserve accuracy in biological sequence databases. Proteomics 16(18), 2454–2460 (2016).
Google Scholar
Shen, Y.-Y., Chen, X. & Murphy, R. W. Assessing DNA barcoding as a tool for species identification and data quality control. PLoS ONE 8(2), e57125 (2013).
Google Scholar
Kozlov, A. M., Zhang, J., Yilmaz, P., Glöckner, F. O. & Stamatakis, A. Phylogeny-aware identification and correction of taxonomically mislabeled sequences. Nucleic Acids Res. 44(11), 5022–5033 (2016).
Google Scholar
Simmons, M., Tucker, A., Chadderton, W. L., Jerde, C. L. & Mahon, A. R. Active and passive environmental DNA surveillance of aquatic invasive species. Can. J. Fish. Aquat. Sci. 73(1), 76–83 (2015).
Google Scholar
Olmos, A. et al. High-throughput sequencing technologies for plant pest diagnosis: Challenges and opportunities. EPPO Bull. 48(2), 219–224 (2018).
Google Scholar
Darling, J. A., Pochon, X., Abbott, C. L., Inglis, G. J. & Zaiko, A. The risks of using molecular biodiversity data for incidental detection of species of concern. Divers. Distrib. 26(9), 1116–1121 (2020).
Google Scholar
Carew, M. E., Coleman, R. A. & Hoffmann, A. A. Can non-destructive DNA extraction of bulk invertebrate samples be used for metabarcoding?. PeerJ 6, e4980 (2018).
Google Scholar
Ji, Y. et al. SPIKEPIPE: A metagenomic pipeline for the accurate quantification of eukaryotic species occurrences and intraspecific abundance change using DNA barcodes or mitogenomes. Mol. Ecol. Resour. 20(1), 256–267 (2020).
Google Scholar
Nielsen, M., Gilbert, M. T. P., Pape, T. & Bohmann, K. A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity. Environ. DNA 1(2), 144–154 (2019).
Google Scholar
Martins, F. M. S. et al. Have the cake and eat it: Optimizing nondestructive DNA metabarcoding of macroinvertebrate samples for freshwater biomonitoring. Mol. Ecol. Resour. 19(4), 863–876 (2019).
Google Scholar
Zizka, V. M. A., Leese, F., Peinert, B. & Geiger, M. F. DNA metabarcoding from sample fixative as a quick and voucher-preserving biodiversity assessment method. Genome 62(3), 122–136 (2018).
Google Scholar
Martoni, F., Valenzuela, I. & Blacket, M. J. Non-destructive DNA extractions from fly larvae (Diptera: Muscidae) enable molecular identification of species and enhance morphological features. Austral. Entomol. 58(4), 848–856 (2019).
Google Scholar
Plant Health Australia. Tomato-potato psyllid (2019). Retrieved 10 April, 2019 from http://www.planthealthaustralia.com.au/pests/tomatopotato-psyllid/.
Yazdani, M. et al. First detection of Russian wheat aphid Diuraphis noxia Kurdjumov (Hemiptera: Aphididae) in Australia: A major threat to cereal production. Austral. Entomol. 57(4), 410–417 (2018).
Google Scholar
Pirtle, E., Maino, J., Lye, J., Umina, P., Heddle, T. & van Helden, M. Managing Russian wheat aphid risk—early season considerations. Centre for Environmental Stress and Adaptation Research (CESAR) (2019). Retrieved February 7, 2020 from http://www.cesaraustralia.com/assets/Uploads/PDFs/RWA-portal/Russian-wheat-aphid-green-bridge-surveillence-update-May-2019.pdf.
Wilson, C., Rowbottom, R., Walker, P., Allen, G., Tegg, R. & Quarrell, S. Surveillance of tomato potato psyllid in the Eastern States and South Australia. Horticulture Innovation Australia (2018). Retrieved February 7, 2020 from https://ausveg.com.au/app/uploads/technical-insights/MT16016.pdf.
Blackman, R. L. & Eastop, V. F. Aphids on the world’s crops: an identification and information guide. Aphids Worlds Crops Identif. Inf. Guide 2nd edn (2000).
Kent, D. & Taylor, G. Two new species of Acizzia Crawford (Hemiptera: Psyllidae) from the Solanaceae with a potential new economic pest of eggplant, Solanum melongena. Aust. J. Entomol. 49(1), 73–81 (2010).
Google Scholar
Subcommittee on Plant Health Diagnostic Standards (SPHDS). Diagnostic protocol for the detection of the Tomato Potato Psyllid, Bactericera cockerelli (Šulc). Department of Agriculture, Australia (2017). Retrieved December 8, 2019 from https://www.plantbiosecuritydiagnostics.net.au/app/uploads/2018/11/NDP-20-Tomato-potato-psyllid-Bactericera-cockerelli-V1.2.pdf.
Farrow, R. & Greenslade, P. Description of a robust interception trap for collecting airborne arthropods in climatically challenging regions. Antarct. Sci. 25(5), 657–662 (2013).
Google Scholar
Ferro, M. L. & Park, J.-S. Effect of propylene glycol concentration on mid-term DNA preservation of Coleoptera. Coleopt. Bull. 67(4), 581–586 (2013).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).
Google Scholar
Martoni, F. Biodiversity, evolution and microbiome of the New Zealand Psylloidea (Hemiptera: Sternorrhyncha) (2017).
Ouvrard, D., Campbell, B. C., Bourgoin, T. & Chan, K. L. 18S rRNA secondary structure and phylogenetic position of Peloridiidae (Insecta, hemiptera). Mol. Phylogenet. Evol. 16(3), 403–417 (2000).
Google Scholar
Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12), 1647–1649 (2012).
Google Scholar
Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73(16), 5261–5267 (2007).
Google Scholar
Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7(3), 355–364 (2007).
Google Scholar
Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 37(Database issue), D26–D31 (2009).
Google Scholar
Chamberlain, S. bold: Interface to Bold Systems API. R package version 0.5.0 (2017). https://github.com/ropensci/bold.
Winter, D. J. rentrez: An R package for the NCBI eUtils API. R J. 9(2), 520–526 (2017).
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2014). http://www.R-project.org/.
Sherrill-Mix, S. taxonomizr: Functions to Work with NCBI Accessions and Taxonomy. R package version 0.5.2 (2018). https://rdrr.io/cran/taxonomizr/.
Mercier, C., Boyer, F., Bonin, A. & Coissac, E. SUMATRA and SUMACLUST: fast and exact comparison and clustering of sequences (2013). http://metabarcoding.org.
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13(7), 581–583 (2016).
Google Scholar
Bushnell, B. BBMap short read aligner, and other bioinformatic tools (2017). https://sourceforge.net/projects/bbmap/.
Ranwez, V., Douzery, E. J. P., Cambon, C., Chantret, N. & Delsuc, F. MACSE v2: Toolkit for the alignment of coding sequences accounting for frameshifts and stop codons. Mol. Biol. Evol. 35(10), 2582–2584 (2018).
Google Scholar
Saitoh, S. et al. A quantitative protocol for DNA metabarcoding of springtails (Collembola). Genome 59(9), 705–723 (2016).
Google Scholar
Wilcox, T. M. et al. Capture enrichment of aquatic environmental DNA: A first proof of concept. Mol. Ecol. Resour. 18(6), 1392–1401 (2018).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8(4), e61217 (2013).
Google Scholar
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).
Walsh, P. S., Metzger, D. A. & Higuchi, R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4), 506–513 (1991).
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547–1549 (2018).
Google Scholar
ABRS. Australian Faunal Directory. Australian Biological Resources Study, Canberra (2009). Retrieved October 30, 2019 from https://biodiversity.org.au/afd/mainchecklist.
Bista, I. et al. Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol. Ecol. Resour. 18, 1020–1103 (2018).
Google Scholar
Illumina. Effects of index misassignment on multiplexing and downstream analysis [White paper] (2017). Retrieved November 25, 2019 from https://www.illumina.com/content/dam/illumina-marketing/documents/products/whitepapers/index-hopping-white-paper-770-2017-004.pdf.
Minich, J. J. et al. Quantifying and understanding well-to-well contamination in microbiome research. mSystems 4(4), e00186-19 (2019).
Google Scholar
Galan, M. et al. Metabarcoding for the parallel identification of several hundred predators and their prey: Application to bat species diet analysis. Mol. Ecol. Resour. 18(3), 474–489 (2018).
Google Scholar
Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).
Google Scholar
Meusnier, I. et al. A universal DNA mini-barcode for biodiversity analysis. BMC Genomics 9, 214 (2008).
Google Scholar
Elbrecht, V. & Steinke, D. Scaling up DNA metabarcoding for freshwater macrozoobenthos monitoring. Freshw. Biol. 64(2), 380–387 (2019).
Google Scholar
Larsson, A. J. M., Stanley, G., Sinha, R., Weissman, I. L. & Sandberg, R. Computational correction of index switching in multiplexed sequencing libraries. Nat. Methods 15(5), 305–307 (2018).
Google Scholar
Gibbons, S. M., Duvallet, C. & Alm, E. J. Correcting for batch effects in case–control microbiome studies. PLoS Comput. Biol. 14(4), 1006102 (2018).
Google Scholar
Yeh, Y.-C., Needham, D. M., Sieradzki, E. T. & Fuhrman, J. A. Taxon disappearance from microbiome analysis reinforces the value of mock communities as a standard in every sequencing run. mSystems 3(3), e00023-18 (2018).
Google Scholar
McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. eLife 8, e46923 https://doi.org/10.7554/eLife.46923 (2019).
Google Scholar
Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16(3), 714–726 (2016).
Google Scholar
Dowle, E. J., Pochon, X., Banks, C. & J., Shearer, K., and Wood, S.A. ,. Targeted gene enrichment and high-throughput sequencing for environmental biomonitoring: A case study using freshwater macroinvertebrates. Mol. Ecol. Resour. 16(5), 1240–1254 (2016).
Google Scholar
Peñalba, J. V. et al. Sequence capture using PCR-generated probes: A cost-effective method of targeted high-throughput sequencing for nonmodel organisms. Mol. Ecol. Resour. 14(5), 1000–1010 (2014).
Google Scholar
Liu, S. et al. Mitochondrial capture enriches mito-DNA 100 fold, enabling PCR-free mitogenomics biodiversity analysis. Mol. Ecol. Resour. 16(2), 470–479 (2016).
Google Scholar
Blackman, R. L. & Eastop, V. F. Aphids on the World’s Herbaceous Plants and Shrubs, 2 Volume Set (Wiley, 2008).
Edgar, R. C. Taxonomy annotation and guide tree errors in 16S rRNA databases. PeerJ 6, e5030 (2018).
Google Scholar
Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47(D1), D259–D264 (2019).
Google Scholar
Tang, C. Q. et al. The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proc. Natl. Acad. Sci. U.S.A. 109(40), 16208–16212 (2012).
Google Scholar
Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hard-bottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 6, e4705 (2018).
Google Scholar
Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep. 8(1), 4226 (2018).
Google Scholar
Porter, T. M. et al. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier. Mol. Ecol. Resour. 14(5), 929–942 (2014).
Google Scholar
Edgar, R. C. SINTAX: a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRxiv https://doi.org/10.1101/2020.05.12.088096 (2016).
Google Scholar
Source: Ecology - nature.com