in

Developmental environment shapes honeybee worker response to virus infection

  • 1.

    Gilbert, S. F. Ecological Developmental Biology. in eLS 1–8 (Wiley, 2017). https://doi.org/10.1002/9780470015902.a0020479.pub2.

  • 2.

    Bateson, P., Gluckman, P. & Hanson, M. The biology of developmental plasticity and the predictive adaptive response hypothesis. J. Physiol. https://doi.org/10.1113/jphysiol.2014.271460 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Emlen, D. J. & Nijhout, H. F. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. https://doi.org/10.1146/annurev.ento.45.1.661 (2000).

    Article 
    PubMed 

    Google Scholar 

  • 4.

    Koyama, T., Mendes, C. C. & Mirth, C. K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. https://doi.org/10.3389/fphys.2013.00263 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Wilson, E. O. The Insect Societies (Harvard University Press, 1971).

    Google Scholar 

  • 6.

    Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. https://doi.org/10.1056/nejmra0708473 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Lummaa, V. & Clutton-Brock, T. Early development, survival and reproduction in humans. Trends Ecol. Evol. 17, 141–147 (2002).

    Article 

    Google Scholar 

  • 8.

    Griffin, R. M., Hayward, A. D., Bolund, E., Maklakov, A. A. & Lummaa, V. Sex differences in adult mortality rate mediated by early-life environmental conditions. Ecol. Lett. https://doi.org/10.1111/ele.12888 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 9.

    Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2287 (2017).

    Article 

    Google Scholar 

  • 10.

    Barrett, E. L. B., Hunt, J., Moore, A. J. & Moore, P. J. Separate and combined effects of nutrition during juvenile and sexual development on female life-history trajectories: The thrifty phenotype in a cockroach. Proc. R. Soc. B Biol. Sci. 276, 3257–3264 (2009).

    Article 

    Google Scholar 

  • 11.

    Kriengwatana, B., Wada, H., Macmillan, A. & MacDougall-Shackleton, S. A. Juvenile nutritional stress affects growth rate, adult organ mass, and innate immune function in zebra finches (Taeniopygia guttata). Physiol. Biochem. Zool. 86, 769–781 (2013).

    Article 

    Google Scholar 

  • 12.

    Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Nestling diet, secondary sexual traits and fitness in the zebra finch. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1999.0649 (1999).

    Article 

    Google Scholar 

  • 13.

    Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2001.1688 (2001).

    Article 

    Google Scholar 

  • 14.

    Naguib, M., Amrhein, V. & Kunc, H. P. Effects of territorial intrusions on eavesdropping neighbors: Communication networks in nightingales. Behav. Ecol. https://doi.org/10.1093/beheco/arh108 (2004).

    Article 

    Google Scholar 

  • 15.

    Stjernman, M., Råberg, L. & Nilsson, J. Å. Long-term effects of nestling condition on blood parasite resistance in blue tits (Cyanistes caeruleus). Can. J. Zool. https://doi.org/10.1139/Z08-071 (2008).

    Article 

    Google Scholar 

  • 16.

    Butler, M. W. & McGraw, K. J. Past or present? Relative contributions of developmental and adult conditions to adult immune function and coloration in mallard ducks (Anas platyrhynchos). J. Comp. Physiol. B. https://doi.org/10.1007/s00360-010-0529-z (2011).

    Article 
    PubMed 

    Google Scholar 

  • 17.

    De Coster, G. et al. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches. Naturwissenschaften https://doi.org/10.1007/s00114-011-0863-3 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Albon, S. D., Clutton-Brock, T. H. & Guinness, F. E. Early development and population dynamics in red deer. II. Density-independent effects and cohort variation. J. Anim. Ecol. https://doi.org/10.2307/4800 (1987).

    Article 

    Google Scholar 

  • 19.

    Meikle, D. & Westberg, M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction https://doi.org/10.1530/rep.0.1220437 (2001).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Burton, T. & Metcalfe, N. B. Can environmental conditions experienced in early life influence future generations?. Proc. R. Soc. B Biol. Sci. 281, 20140311 (2014).

    Article 

    Google Scholar 

  • 21.

    Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science https://doi.org/10.1126/science.1153069 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 22.

    Roth, A. et al. A genetic switch for worker nutritionmediated traits in honeybees. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000171 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Slater, G. P., Yocum, G. D. & Bowsher, J. H. Diet quantity influences caste determination in honeybees (Apis mellifera). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2020.0614 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Rembold, H., Lackner, B. & Geistbeck, I. The chemical basis of honeybee, Apis mellifera, caste formation: Partial purification of queen bee determinator from royal jelly. J. Insect Physiol. https://doi.org/10.1016/0022-1910(74)90063-8 (1974).

    Article 
    PubMed 

    Google Scholar 

  • 25.

    Mutti, N. S. et al. IRS and tor nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. https://doi.org/10.1242/jeb.061499 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Scofield, H. N. & Mattila, H. R. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE https://doi.org/10.1371/journal.pone.0121731 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Rittschof, C. C., Coombs, C. B., Frazier, M., Grozinger, C. M. & Robinson, G. E. Early-life experience affects honey bee aggression and resilience to immune challenge. Sci. Rep. https://doi.org/10.1038/srep15572 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Walton, A., Dolezal, A. G., Bakken, M. A. & Toth, A. L. Hungry for the queen: Honeybee nutritional environment affects worker pheromone response in a life stage-dependent manner. Funct. Ecol. https://doi.org/10.1111/1365-2435.13222 (2018).

    Article 

    Google Scholar 

  • 29.

    Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Alaux, C. et al. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. https://doi.org/10.1038/srep40568 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. https://doi.org/10.1016/j.biocon.2009.04.007 (2009).

    Article 

    Google Scholar 

  • 32.

    Dolezal, A. G. & Toth, A. L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2018.02.006 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 33.

    Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. https://doi.org/10.1098/rsbl.2009.0986 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Jack, C. J., Uppala, S. S., Lucas, H. M. & Sagili, R. R. Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19 (2016).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016 (2013).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1818371116 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 38.

    Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.04.004 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 39.

    DeGrandi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2010.03.017 (2010).

    Article 
    PubMed 

    Google Scholar 

  • 40.

    Hsieh, E. M., Berenbaum, M. R. & Dolezal, A. G. Ameliorative effects of phytochemical ingestion on viral infection in honey bees. Insects https://doi.org/10.3390/insects11100698 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Rutter, L. et al. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics https://doi.org/10.1186/s12864-019-5767-1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Chen, Y. P. et al. Israeli acute paralysis virus: Epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004261 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science https://doi.org/10.1126/science.1146498 (2007).

    Article 
    PubMed 

    Google Scholar 

  • 44.

    Maori, E. et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2009.00847.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Hsieh, E. M., Carrillo-Tripp, J. & Dolezal, A. G. Preparation of virus-enriched inoculum for oral infection of honey bees (Apis Mellifera). J. Vis. Exp. https://doi.org/10.3791/61725 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 46.

    Wang, Y., Kaftanoglu, O., Fondrk, M. K. & Page, R. E. Nurse bee behaviour manipulates worker honeybee (Apis mellifera L.) reproductive development. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.02.012 (2014).

    Article 

    Google Scholar 

  • 47.

    Wang, Y. et al. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). J. Exp. Biol. 219, 960–968 (2016).

    Article 

    Google Scholar 

  • 48.

    Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E. & Amdam, G. V. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J. Exp. Biol. https://doi.org/10.1242/jeb.130435 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 49.

    Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).

    Article 

    Google Scholar 

  • 50.

    Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Pollen contaminated with field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J. Econ. Entomol. https://doi.org/10.1093/jee/tov301 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 51.

    Carrillo-Tripp, J. et al. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. https://doi.org/10.1038/srep22265 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000412 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002268117 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods https://doi.org/10.1006/meth.2001.1262 (2001).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Richard, F. J., Holt, H. L. & Grozinger, C. M. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics https://doi.org/10.1186/1471-2164-13-558 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2006.00682.x (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Ryabov, E. V., Fannon, J. M., Moore, J. D., Wood, G. R. & Evans, D. J. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ https://doi.org/10.7717/peerj.1591 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: From protists to man. Curr. Genet. https://doi.org/10.1007/s00294-006-0078-x (2006).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Harwood, G. P., Ihle, K. E., Salmela, H. & Amdam, G. V. Regulation of honeybee worker (Apis mellifera) life histories by Vitellogenin. in Hormones, Brain and Behavior: Third Edition (2017). https://doi.org/10.1016/B978-0-12-803592-4.00036-5.

  • 60.

    Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2016).

  • 61.

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team (2014). nlme: linear and nonlinear mixed effects models. R package version 3.1–117. http://cran.r-project.org/web/packages/nlme/index.html (2014).

  • 62.

    Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R package version 1.15–15 (2020) .License”>https://doi.org/10.1080/00031305.1980.10483031>.License.

  • 63.

    Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie https://doi.org/10.1051/apido:19990406 (1999).

    Article 

    Google Scholar 

  • 64.

    McMullan, J. B. & Brown, M. J. F. The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie https://doi.org/10.1051/apido:2006041 (2006).

    Article 

    Google Scholar 

  • 65.

    Teicher, M. H. et al. The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev. https://doi.org/10.1016/S0149-7634(03)00007-1 (2003).

    Article 
    PubMed 

    Google Scholar 

  • 66.

    Harlow, H. F., Dodsworth, R. O. & Harlow, M. K. Total social isolation in monkeys. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.54.1.90 (1965).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. https://doi.org/10.1242/jeb.01956 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    St Clair, A. L., Zhang, G., Dolezal, A. G., O’Neal, M. E. & Toth, A. L. Diversified farming in a monoculture landscape: Effects on honey bee health and wild bee communities. Environ. Entomol. https://doi.org/10.1093/ee/nvaa031 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. USA. 116, 25147–25155 (2019).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. https://doi.org/10.1038/s41598-019-52485-y (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/80.2.176 (1987).

    Article 

    Google Scholar 

  • 72.

    Schmidt, L. S., Schmidt, J. O., Hima, R., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. https://doi.org/10.1093/jee/88.6.1591 (1995).

    Article 

    Google Scholar 

  • 73.

    Dolezal, A. G., Carrillo-Tripp, J., Allen Miller, W., Bonning, B. C. & Toth, A. L. Intensively cultivated landscape and varroa mite infestation are associated with reduced honey bee nutritional state. PLoS ONE https://doi.org/10.1371/journal.pone.0153531 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Failla, M. L. Trace elements and host defense: Recent advances and continuing challenges. J. Nutr. https://doi.org/10.1093/jn/133.5.1443s (2003).

    Article 
    PubMed 

    Google Scholar 

  • 75.

    Filipiak, M. et al. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE https://doi.org/10.1371/journal.pone.0183236 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Gems, D. & Partridge, L. Stress-response hormesis and aging: ‘That which does not kill us makes us stronger’. Cell Metab. https://doi.org/10.1016/j.cmet.2008.01.001 (2008).

    Article 
    PubMed 

    Google Scholar 

  • 77.

    Ihle, K. E., Baker, N. A. & Amdam, G. V. Insulin-like peptide response to nutritional input in honey bee workers. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2014.05.026 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 78.

    Paul, S. & Keshan, B. Ovarian development and vitellogenin gene expression under heat stress in silkworm, Bombyx mori. Psyche https://doi.org/10.1155/2016/4242317 (2016).

    Article 

    Google Scholar 

  • 79.

    Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).

    Article 
    PubMed 

    Google Scholar 

  • 80.

    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2007.0011 (2008).

    Article 

    Google Scholar 

  • 81.

    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).

    Article 
    PubMed 

    Google Scholar 

  • 82.

    Smart, M. D., Pettis, J. S., Euliss, N. & Spivak, M. S. Land use in the Northern Great Plains region of the US influences the survival and productivity of honey bee colonies. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2016.05.030 (2016).

    Article 

    Google Scholar 

  • 83.

    Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1603481113 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE https://doi.org/10.1371/journal.pone.0152685 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 86.

    De Smet, L. et al. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLoS ONE https://doi.org/10.1371/journal.pone.0171529 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 87.

    de Graaf, D. C. et al. Heritability estimates of the novel trait ‘suppressed in ovo virus infection’ in honey bees (Apis mellifera). Sci. Rep. https://doi.org/10.6084/m9.figshare.8170925 (2020).


  • Source: Ecology - nature.com

    Pathfinder satellite paves way for constellation of tropical-storm observers

    Designing exploratory robots that collect data for marine scientists