in

Diet-driven mercury contamination is associated with polar bear gut microbiota

  • 1.

    Evariste, L. et al. Gut microbiota of aquatic organisms: A key endpoint for ecotoxicological studies. Environ. Pollut. 248, 989–999 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Guo, G., Yumvihoze, E., Poulain, A. J. & Chan, H. M. Monomethylmercury degradation by the human gut microbiota is stimulated by protein amendments. J. Toxicol. Sci. 43, 717–725 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Dempsey, J. L., Little, M. & Cui, J. Y. Gut microbiome: An intermediary to neurotoxicity. Neurotoxicology 75, 41–69 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Breton, J. Ô. et al. Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol. Lett. 222, 132–138 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Claus, S. P., Guillou, H. & Ellero-Simatos, S. The gut microbiota: A major player in the toxicity of environmental pollutants?. NPJ Biofilms Microbiomes 2, 16003 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Nakamura, I., Hosokawa, K., Tamura, H. & Miura, T. Reduced mercury excretion with feces in germfree mice after oral administration of methyl mercury chloride. Bull. Environ. Contam. Toxicol. 17, 528–533 (1977).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Rowland, I. R., Davies, M. J. & Evans, J. G. Tissue content of mercury in rats given methylmercuric chloride orally: Influence of intestinal flora. Arch. Environ. Health 35, 155–160 (1980).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Seko, Y., Miura, T., Takahashi, M. & Koyama, T. Methyl mercury decomposition in mice treated with antibiotics. Acta Pharmacol. Toxicol. (Copenh) 49, 259–265 (1981).

    CAS 

    Google Scholar 

  • 9.

    Lapanje, A., Zrimec, A., Drobne, D. & Rupnik, M. Long-term Hg pollution-induced structural shifts of bacterial community in the terrestrial isopod (Porcellio scaber) gut. Environ. Pollut. 158, 3186–3193 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Ruan, Y. et al. High doses of copper and mercury changed cecal microbiota in female mice. Biol. Trace Elem. Res. 189, 134–144 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Desforges, J.-P.W. et al. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 86, 126–139 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 12.

    Dietz, R. et al. What are the toxicological effects of mercury in Arctic biota?. Sci. Total Environ. 443, 775–790 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Amstrup, S. C., Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. The polar bear-Ursus maritimus biology, management, and conservation. Wild Mammals North Am. Biol. Manag. Conserv. 2, 587–610 (2003).

    Google Scholar 

  • 14.

    McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633 (2017).

    Google Scholar 

  • 15.

    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. 10, 2093–2103 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Routti, H. et al. Contaminants in Polar Bears from the Circumpolar Arctic State of Knowledge and Further Recommendations for Monitoring and Research-Action #42 of the Circumpolar Action Plan for polar Bear Conservation (2019).

  • 17.

    Letcher, R. J. et al. Exposure and effects assessment of persistent organohalogen contaminants in Arctic wildlife and fish. Sci. Total Environ. 408, 2995–3043 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Dietz, R. et al. Trends in mercury in hair of Greenlandic polar bears (Ursus maritimus) during 1892–2001. Environ. Sci. Technol. 40, 1120–1125 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Borgå, K., Fisk, A. T., Hoekstra, P. F. & Muir, D. C. G. Biological and chemical factors of importance in the bioaccumulation and trophic transfer of persistent organochlorine contaminants in Arctic marine food webs. Environ. Toxicol. Chem. 23, 2367 (2004).

    PubMed 

    Google Scholar 

  • 20.

    Hoekstra, P. F. et al. Trophic transfer of persistent organochlorine contaminants (OCs) within an Arctic marine food web from the southern Beaufort-Chukchi Seas. Environ. Pollut. 124, 509–522 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science (80–) 320, 1647–1651 (2008).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Borbón-García, A., Reyes, A., Vives-Flórez, M. & Caballero, S. Captivity shapes the gut microbiota of Andean bears: Insights into health surveillance. Front. Microbiol. 8, 1316 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Ferguson, S. H., Stirling, I. & McLoughlin, P. Climate change and ringed seal (Phoca hispida) recruitment in western Hudson Bay. Mar. Mammal Sci. 21, 121–135 (2005).

    Google Scholar 

  • 25.

    Thiemann, G., Iverson, S. & Stirling, I. Polar bear diets and arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613 (2008).

    Google Scholar 

  • 26.

    Muir, D. C., Norstrom, R. J. & Simon, M. Organochlorine contaminants in Arctic marine food chains: Accumulation of specific polychlorinated biphenyls and chlordane-related compounds. Environ. Sci. Technol. 22, 1071–1079 (1988).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Young, B. G., Loseto, L. L. & Ferguson, S. H. Diet differences among age classes of Arctic seals: Evidence from stable isotope and mercury biomarkers. Polar Biol. 33, 153–162 (2010).

    Google Scholar 

  • 28.

    Correa, L., Castellini, J. M., Quakenbush, L. T. & O’Hara, T. M. Mercury and selenium concentrations in skeletal muscle, liver, and regions of the heart and kidney in bearded seals from Alaska, USA. Environ. Toxicol. Chem. 34, 2403–2408 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Brown, T. M. et al. Mercury and cadmium in ringed seals in the Canadian Arctic: Influence of location and diet. Sci. Total Environ. 545–546, 503–511 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 30.

    McKinney, M. A., Atwood, T. C., Pedro, S. & Peacock, E. Ecological change drives a decline in mercury concentrations in southern Beaufort Sea polar bears. Environ. Sci. Technol. 51, 7814–7822 (2017).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. 20, 1–1 (2019).

    Google Scholar 

  • 32.

    Calvert, W. & Ramsay, M. A. Evaluation of age determination of polar bears by counts of cementum growth layer groups. Ursus 10, 449–453 (1998).

    Google Scholar 

  • 33.

    Cattet, M. R., Caulkett, N. A., Obbard, M. E. & Stenhouse, G. B. A body-condition index for ursids. Can. J. Zool. 80, 1156–1161 (2002).

    Google Scholar 

  • 34.

    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 35.

    Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5, 9743 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Price, M. N., Dehal, P. S. & Arkin, A. P. Fasttree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Golzadeh, N. et al. Evaluating the concentrations of total mercury, methylmercury, selenium, and selenium:mercury molar ratios in traditional foods of the Bigstone Cree in Alberta Canada. Chemosphere 250, 20 (2020).

    Google Scholar 

  • 40.

    Iverson, S. J., Field, C., DonBowen, W. & Blanchard, W. Quantitative fatty acid signature analysis: A new method of estimating predator diets. Ecol. Monogr. 74, 211–235 (2004).

    Google Scholar 

  • 41.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).

    Google Scholar 

  • 42.

    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).

    Google Scholar 

  • 43.

    Grandjean, P. & Budtz-Jørgensen, E. Total imprecision of exposure biomarkers: Implications for calculating exposure limits. Am. J. Ind. Med. 50, 712–719 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Dietz, R. et al. Temporal trends and future predictions of mercury concentrations in Northwest Greenland polar bear (Ursus maritimus) hair. Environ. Sci. Technol. 45, 1458–1465 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Foster, Z. S. L., Sharpton, T. J. & Grünwald, N. J. Metacoder: An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Xia, J. et al. Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 209, 1–8 (2018).

    CAS 

    Google Scholar 

  • 48.

    Rothenberg, S. E. et al. The role of gut microbiota in fetal methylmercury exposure: Insights from a pilot study. Toxicol. Lett. 242, 60–67 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Wu, J. et al. Perinatal lead exposure alters gut microbiota composition and results in sex-specific bodyweight increases in adult mice. Toxicol. Sci. 151, 324–333 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Gilmour, C. C. et al. Mercury methylation by novel microorganisms from new environments. Environ. Sci. Technol. 47, 11810–11820 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Li, H. et al. Intestinal methylation and demethylation of mercury. Bull. Environ. Contam. Toxicol. 1025(102), 597–604 (2018).

    Google Scholar 

  • 53.

    Guo, X. et al. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112, 1–8 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Hollister, E. B. et al. Structure and function of the healthy pre-adolescent pediatric gut microbiome. Microbiome 3, 36 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Rowland, I., Davies, M. & Grasso, P. Biosynthesis of methylmercury compounds by the intestinal flora of the rat. Arch. Environ. Health Int. J. 32, 24–28 (1977).

    CAS 

    Google Scholar 

  • 58.

    Paredes-Sabja, D., Setlow, P. & Sarker, M. R. Germination of spores of Bacillales and Clostridiales species: Mechanisms and proteins involved. Trends Microbiol. 19, 85–94 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Setlow, P., Wang, S. & Li, Y. Q. Germination of spores of the orders Bacillales and Clostridiales. Annu. Rev. Microbiol. 71, 459–477 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Ilinskaya, O. N., Ulyanova, V. V., Yarullina, D. R. & Gataullin, I. G. Secretome of intestinal bacilli: A natural guard against pathologies. Front. Microbiol. 8, 25 (2017).

    Google Scholar 

  • 61.

    Hiller-Bittrolff, K., Foreman, K., Bulseco-McKim, A. N., Benoit, J. & Bowen, J. L. Effects of mercury addition on microbial community composition and nitrate removal inside permeable reactive barriers. Environ. Pollut. 242, 797–806 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Kuhn, K. A. et al. Bacteroidales recruit IL-6-producing intraepithelial lymphocytes in the colon to promote barrier integrity. Mucosal Immunol. 11, 357–368 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Wei, Z. S. et al. Effect of gaseous mercury on nitric oxide removal performance and microbial community of a hybrid catalytic membrane biofilm reactor. Chem. Eng. J. 316, 584–591 (2017).

    CAS 

    Google Scholar 

  • 64.

    Pagano, A. M. et al. High-energy, high-fat lifestyle challenges an Arctic apex predator, the polar bear. Science (80–) 359, 568–572 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 65.

    Van Waaij, D., Berghuis-de Vries, J. M. & Lekkerkerk-Van Der Wees, J. E. C. Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J. Hyg. (Lond.) 69, 405–411 (1971).

    Google Scholar 

  • 66.

    Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I. & Glover, L. A. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ. Microbiol. 7, 301–313 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Cowan, T. E. et al. Chronic coffee consumption in the diet-induced obese rat: Impact on gut microbiota and serum metabolomics. J. Nutr. Biochem. 25, 489–495 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Bishara, J. et al. Obesity as a risk factor for Clostridium difficile infection. Clin. Infect. Dis. 57, 489–493 (2013).

    PubMed 

    Google Scholar 

  • 69.

    Pohlner, M. et al. The majority of active Rhodobacteraceae in marine sediments belong to uncultured genera: A molecular approach to link their distribution to environmental conditions. Front. Microbiol. 10, 659 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Simon, M. et al. Phylogenomics of Rhodobacteraceae reveals evolutionary adaptation to marine and non-marine habitats. ISME J. 11, 1483–1499 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 71.

    Castonguay-Paradis, S. et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 10, 1–11 (2020).

    Google Scholar 


  • Source: Ecology - nature.com

    3 Questions: Tolga Durak on building a safety culture at MIT

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production