in

Differences in PItotal of Quercus liaotungensis seedlings between provenance

  • 1.

    Wang, W., Li, Q. K. & Ma, K. P. Establishment and spatial distribution of Quercus liaotungensis Koidz. seedlings in Dongling Mountain. Acta Phytoecol. Sin. 24, 595 (2000).

  • 2.

    Han, H. R., He, S. Q. & Zhang, X. P. The effect of light intensity on the growth and development of Quercus liaotungensis seedlings. J. Beijing For. Univ. 22, 97–100 (2000).

    Google Scholar 

  • 3.

    Chen, Z. P., Wang, H. & Yuan, H. B. Studies on soil seed bank and seed fate of Quercus liaotungensis forest in the Ziwu Mountains. J. Gansu Agric. Univ. 40, 7–12 (2005).

    Google Scholar 

  • 4.

    Li, Y. Resource investigation and superior germplasm resources selection of woody energy plants Quercus mongolica Fisch and Quercus liaotungensis Koidz, Dissertation, Chinese Academy of Forestry, (2011).

  • 5.

    Yin, X., Zhou, G., Sui, X., He, Q. & Li, R. Dominant climatic factors of Quercus mongolica geographical distribution and their thresholds. Acta Ecol. Sin 33, 103–109 (2013).

    Article 

    Google Scholar 

  • 6.

    Takai, T. et al. A natural variant of NAL1, selected in high-yield rice breeding programs, pleiotropically increases photosynthesis rate. Sci. Rep. 3, 1–11 (2013).

    Article 

    Google Scholar 

  • 7.

    Yang, Y. J., Tong, Y. G., Yu, G. Y., Zhang, S. B. & Huang, W. Photosynthetic characteristics explain the high growth rate for Eucalyptus camaldulensis: Implications for breeding strategy. Ind. Crop. Prod. 124, 186–191 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Spyridaki, A., Psylinakis, E. & Ghanotakis, D. F. Photosystem II. In Biotechnological Applications of Photosynthetic Proteins: Biochips, Biosensors and Biodevices (ed. Giardi, M.T. & Piletska, E. V.) 11–13 (Springer, Boston, 2006).

  • 9.

    Dąbrowski, P. et al. Prompt chlorophyll a fluorescence as a rapid tool for diagnostic changes in PSII structure inhibited by salt stress in Perennial ryegrass. J. Photochem. Photobiol. B 157, 22–31 (2016).

  • 10.

    Van Rooijen, R. et al. Natural variation of YELLOW SEEDLING1 affects photosynthetic acclimation of Arabidopsis thaliana. Nat. Commun. 8, 1–9 (2017).

    Article 

    Google Scholar 

  • 11.

    Zushi, K., Kajiwara, S. & Matsuzoe, N. Chlorophyll a fluorescence OJIP transient as a tool to characterize and evaluate response to heat and chilling stress in tomato leaf and fruit. Sci. Hortic. 148, 39–46 (2012).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Fan, J. et al. Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Front. Plant Sci. 6, 925 (2015).

    Article 

    Google Scholar 

  • 13.

    Van Heerden, P., Swanepoel, J. & Krüger, G. Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation. Environ. Exp. Bot. 61, 124–136 (2007).

    Article 

    Google Scholar 

  • 14.

    Živčák, M., Brestič, M., Olšovská, K. & Slamka, P. Performance index as a sensitive indicator of water stress in Triticum aestivum L. Plant Soil Environ. 54, 133–139 (2008).

    Article 

    Google Scholar 

  • 15.

    Kalaji, H. M., Bosa, K., Kościelniak, J. & Żuk-Gołaszewska, K. Effects of salt stress on photosystem II efficiency and CO2 assimilation of two Syrian barley landraces. Environ. Exp. Bot. 73, 64–72 (2011).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Singh, D. P. & Sarkar, R. K. Distinction and characterisation of salinity tolerant and sensitive rice cultivars as probed by the chlorophyll fluorescence characteristics and growth parameters. Funct. Plant Biol. 41, 727–736 (2014).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Song, X. L. et al. NaCl stress aggravates photoinhibition of photosystem II and photosystem I in Capsicum annuum leaves under high irradiance stress. Acta Phytoecol. Sin. 35, 681 (2011).

  • 18.

    Sun, Y. J., Du, Y. P. & Zhai, H. Effects of different light intensity on PSII activity and recovery of Vitis vinifera cv. cabernet sauvignon leaves under high temperature stress. Plant Physiol. J. 50, 1209–1215 (2014).

    Google Scholar 

  • 19.

    Chen, S., Strasser, R. J. & Qiang, S. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers. Plant Physiol. Biochem. 84, 10–21 (2014).

    Article 

    Google Scholar 

  • 20.

    Zorić, A. S. et al. Resource allocation in response to herbivory and gall formation in Linaria vulgaris. Plant Physiol. Biochem. 135, 224–232 (2019).

    Article 

    Google Scholar 

  • 21.

    Butler, W. & Kitajima, M. Fluorescence quenching in photosystem II of chloroplasts. Biochim. Biophys. Acta. 376, 116–125 (1975).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Baker, N. R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59, 89–113 (2008).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Strasser, R. J., Srivastava, A. & Tsimilli-Michael, M. Screening the vitality and photosynthetic activity of plants by fluorescence transient. In Crop Improvement for Food Security (ed. Behl, R. K., Punia, M. S. & Lather, B. P. S.) 72–115 (SSARM, Hisar, 1999).

  • 24.

    Appenroth, K. J., Stöckel, J., Srivastava, A. & Strasser, R. Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ. Pollut. 115, 49–64 (2001).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Stirbet, A., Lazár, D., Kromdijk, J. & Govindjee, G. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses?. Photosynthetica 56, 86–104. https://doi.org/10.1007/s11099-018-0770-3 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Tsimilli-Michael, M., Strasser, R. J. In vivo assessment of plants’ vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In Mycorrhiza: State of the Art. Genetics and Molecular Biology, Eco-Function, Biotechnology, Eco-Physiology, Structure and Systematics (ed. Varma, A.) 679–703 (Springer, Dordrecht, 2008).

  • 27.

    Albert, K. R., Mikkelsen, T. N., Michelsen, A., Ro-Poulsen, H. & van der Linden, L. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. J. Plant Physiol. 168, 1550–1561 (2011).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Chen, L. et al. Melatonin is involved in regulation of bermudagrass growth and development and response to low K+ stress. Front. Plant Sci. 8, 2038 (2017).

    Article 

    Google Scholar 

  • 29.

    Zhang, L. et al. The alleviation of heat damage to photosystem II and enzymatic antioxidants by exogenous spermidine in tall fescue. Front. Plant Sci. 8, 1747 (2017).

    Article 

    Google Scholar 

  • 30.

    Yao, X. et al. Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regul. 83, 409–416 (2017).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Samborska, I. A. et al. Structural and functional disorder in the photosynthetic apparatus of radish plants under magnesium deficiency. Funct. Plant Biol. 45, 668–679 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    dos Santos, V. A. H. F. & Ferreira, M. J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting. For. Ecol. Manage. 460, 7900 (2020).

    Google Scholar 

  • 33.

    Pavlović, I. et al. Early Brassica crops responses to salinity stress: A comparative analysis between Chinese cabbage, white cabbage, and kale. Front. Plant Sci. 10, 450 (2019).

    Article 

    Google Scholar 

  • 34.

    Xin, J., Ma, S., Li, Y., Zhao, C. & Tian, R. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands. Ecotox. Environ. Safe. 203, 111024 (2020).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Wang, M. X. Forest genetics and breeding (ed. Wang, M. X.) 130–137 (China Forestry Publishing House, Beijing, 2001).

  • 36.

    Kurjak, D. et al. Variation in the performance and thermostability of photosystem II in European beech (Fagus sylvatica L.) provenances is influenced more by acclimation than by adaptation. Eur. J. For. Res. 138, 79–92 (2019).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Navarro-Cerrillo, R. M. et al. Growth and physiological sapling responses of eleven Quercus ilex ecotypes under identical environmental conditions. For. Ecol. Manage. 415, 58–69 (2018).

    Article 

    Google Scholar 

  • 38.

    Guo, H., Wang, X. A., Zhu, Z. H., Wang, S. X. & Guo, J. C. Seed and microsite limitation for seedling recruitment of Quercus wutaishanica on Mt. Ziwuling, Loess Plateau, China. New For. 41, 127–137 (2011).

  • 39.

    Li, Z. S. et al. Tree-ring growth responses of Liaodong Oak (Quercus wutaishanica) to climate in the Beijing Dongling Mountain of China. Acta Phytoecol. Sin. 41, 11 (2021).

    Google Scholar 

  • 40.

    Holland, V., Koller, S. & Bruggemann, W. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis. Plant Biol. 16, 801–808. https://doi.org/10.1111/plb.12105 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Ahammed, G. J., Xu, W., Liu, A. & Chen, S. COMT1 silencing aggravates heat stress-induced reduction in photosynthesis by decreasing chlorophyll content, photosystem II activity, and electron transport efficiency in tomato. Front. Plant Sci. 9, 998 (2018).

    Article 

    Google Scholar 

  • 42.

    Kalaji, H. M. et al. Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiol. Plant. 38, 102 (2016).

    Article 

    Google Scholar 

  • 43.

    Liu, J., Lu, Y., Hua, W. & Last, R. L. A new light on photosystem II maintenance in oxygenic photosynthesis. Front. Plant Sci. 10, 975 (2019).

    Article 

    Google Scholar 

  • 44.

    Shucun, S. & Lingzhi, C. Leaf growth and photosynthesis of Quercus liaotungensis in Dongling Mountain region. Acta Phytoecol. Sin. 20, 212–217 (2000).

    Google Scholar 

  • 45.

    Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S. & Farquhar, G. D. Quantifying impacts of enhancing photosynthesis on crop yield. Nat. Plants 5, 380–388 (2019).

    Article 

    Google Scholar 

  • 46.

    Pšidová, E. et al. Altitude of origin influences the responses of PSII photochemistry to heat waves in European beech (Fagus sylvatica L.). Environ. Exp. Bot. 152, 97–106 (2018).

    Article 

    Google Scholar 

  • 47.

    Liang, D. et al. Exogenous melatonin promotes biomass accumulation and photosynthesis of kiwifruit seedlings under drought stress. Sci. Hortic. 246, 34–43 (2019).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Panda, D., Ray, A. & Sarkar, R. K. Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding. Photosynthetica 57, 1084–1093 (2019).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Zhang, H. H. et al. Effects of flooding stress on the photosynthetic apparatus of leaves of two Physocarpus cultivars. J. For. Res. 29, 1049–1059. https://doi.org/10.1007/s11676-017-0496-2 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 50.

    Lu, W. J. Plant physiology (ed. Lu, W. J.) 88–89 (China Forestry Publishing House, Beijing, 2017).

  • 51.

    Xiao, C. W. & Zhou, G. S. Effect of simulated precipitation change on growth, gas exchange and chlorophyll fluorescence of Caragana intermedia in Manwusu sandland. Chin. J. Appl. Ecol. 5, 692–696 (2001).

    ADS 

    Google Scholar 


  • Source: Ecology - nature.com

    Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production

    Population genetics and independently replicated evolution of predator-associated burst speed ecophenotypy in mosquitofish