Lindenmayer, D., Cunningham, S. & Young, A. Land use intensification: Effects on agriculture, biodiversity and ecological processes (CSIRO Publishing, Collingwood, 2012).
Google Scholar
Gibson, D. J. Grasses and grassland ecology (Oxford University Press, Oxford, 2009).
White, R., Murray, S., & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. (2000). https://doi.org/10.1021/es0032881
Schmidt, A. C., Fraser, L. H., Carlyle, C. N. & Bassett, E. R. L. Does cattle grazing affect ant abundance and diversity in temperate grasslands?. Rangeland Ecol. Manag. 65(3), 292–298. https://doi.org/10.2111/REM-D-11-00100.1 (2012).
Google Scholar
Phifer, C. C., Knowlton, J. L., Webster, C. R., Flaspohler, D. J. & Licata, J. A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. 26(13), 3073–3101. https://doi.org/10.1007/s10531-016-1126-6 (2017).
Google Scholar
Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x (2009).
Google Scholar
Sasaki, T. et al. Nestedness and niche-based species loss in moorland plant communities. Oikos 121(11), 1783–1790. https://doi.org/10.1111/j.1600-0706.2012.20152.x (2012).
Google Scholar
Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).
Google Scholar
Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345 (2015).
Google Scholar
Swenson, N. G. & Enquist, J. Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology 90(8), 2161–2170 (2009).
Google Scholar
Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557–567 (2004).
Google Scholar
Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. America 75(1), 3–35. https://doi.org/10.1890/04-0922 (2005).
Google Scholar
Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).
Google Scholar
Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646–655. https://doi.org/10.1016/S0169-5347(01)02283-2 (2001).
Google Scholar
Bruno, J. F. & Cardinale, B. J. Cascading effects of predator richness. Front. Ecol. Environ. 6(10), 539–546. https://doi.org/10.1890/070136 (2008).
Google Scholar
Avalos, G., Rubio, G. D., Bar, M. E. & González, A. Arañas (Arachnida: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Rev. Biol. Trop. 55(3–4), 899–909 (2007).
Google Scholar
Downie, I. S. et al. The impact of different agricultural land-uses on epigeal spider diversity in Scotland. J. Insect Conserv. 3(4), 273–286 (1999).
Google Scholar
Salas-Lopez, A., Violle, C., Mallia, L. & Orivel, J. Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana. Insect. Conserv. Divers. 11(2), 162–173. https://doi.org/10.1111/icad.12248 (2018).
Google Scholar
Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51(2), 630. https://doi.org/10.2307/2411138 (1997).
Google Scholar
Woolley, C., Thomas, C. F. G., Blackshaw, R. P. & Goodacre, S. L. Aerial dispersal activity of spiders sampled from farmland in southern England. J. Arachnol. 44(3), 347–358. https://doi.org/10.1636/p15-56.1 (2016).
Google Scholar
Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27(1), 371–377. https://doi.org/10.2307/3706009 (1999).
Google Scholar
Tuf, I. H., Dedek, P. & Veselý, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature and habitat?. Arch. Biol. Sci. 64(2), 721–732. https://doi.org/10.2298/ABS1202721T (2012).
Google Scholar
Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R. & Nentwig, W. Body size-climate relationships of European spiders. J. Biogeogr. 37(3), 477–485. https://doi.org/10.1111/j.1365-2699.2009.02216.x (2010).
Google Scholar
Blandenier, G. Ballooning of spiders (Araneae) in Switzerland: General results from an eleven-year survey. Arachnology 14(7), 308–316. https://doi.org/10.13156/arac.2009.14.7.308 (2014).
Google Scholar
Greenstone, M. H. Determinants of web spider species diversity: Vegetation structural diversity vs. prey availability. Oecologia 62(3), 299–304 (1984).
Google Scholar
Morello, J., Matteucci, S. D., & Rodríguez, A. F. Ecorregiones y complejos ecosistémicos de argentina. Orientación Gráfica Editora, Buenos Aires (2012).
Satorre, E. H. Cambios tecnológicos en la agricultura argentina actua. Ciencia hoy. 15(87), 6 (2005).
Viglizzo, E., La Pampa, I.C.R., Satorre, E., Solbrig, O.T., Torres, F. & Ingaramo, J. The provision of ecosystem services and human well-being in the Pampas of Argentina. Millennium Ecosystem Assessment: Full Report (2005).
INTA. Instituto Nacional de Tecnología Agropecuaria (INTA). Plan De Tecnologia Regional 2009–2011, INTA Centro Regional Entre Ríos (2009).
Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313. https://doi.org/10.1016/j.foreco.2019.01.021 (2019).
Google Scholar
Pinto, C. M., Santoandré, S., Zurita, G., Bellocq, M. I. & Filloy, J. Conifer plantations in grassland and subtropical forest: Does spider diversity respond different to edge effect?. J. For. Res. 23(5), 253–259. https://doi.org/10.1080/13416979.2018.1506248 (2018).
Google Scholar
Bell, J., Wheater, C. & Cullen, W. The implications of grassland and heathland management for the conservation of spider communities: A review. J. Zool. 255, 377–387. https://doi.org/10.1017/s0952836901001479 (2001).
Google Scholar
Spears, L.R., & MacMahon, J.A. An experimental study of spiders in a shrub-steppe ecosystem: The effects of prey availability and shrub architecture. J. Arachnol. 40(2):218–227 (2012). http://digitalcommons.usu.edu/etd/1207/
Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004).
Merrett, P. & Snazell, R. A comparison of pitfall trapping and vacuum sampling for assessing spider faunas on heath-land at Ashdown Forest, south-east England. Bull. Br. Arachnol. Soc. 6(1), 1–13 (1983).
Lambeets, K., Vandegehuchte, M., Jean-Pierre, M. & Dries, B. Physical defences wear you down: Progressive and. J. Anim. Ecol. 78, 281–291. https://doi.org/10.1111/j.1365-2656.2007.0 (2009).
Google Scholar
Duelli, P., Obrist, M. K. & Schmatz, D. R. Environment Biodiversity evaluation in agricultural landscapes: Above-ground insects (Woodhead Publishing Limited, Cambridge, 1999). https://doi.org/10.1016/B978-0-444-50019-9.50006-6.
Google Scholar
Munévar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2018.03.025 (2017).
Google Scholar
Horváth, R., Lengyel, S., Szinetár, C. & Jakab, L. L. The effect of prey availability on spider assemblages on European black pine (Pinus nigra) bark: Spatial patterns and guild structure. Can. J. Zool. 83(2), 324–335. https://doi.org/10.1139/z05-009 (2005).
Google Scholar
Bonte, D., Borre, J. V., Lens, L. & Maelfait, J.-P. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim. Behav. 72(3), 655–662. https://doi.org/10.1016/j.anbehav.2005.11.026 (2006).
Google Scholar
Legendre, P., Legendre, L. Numerical ecology: Developments in environmental modelling. Developments in Environmental Modelling. 20 (1998)
R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. Internet: http://www.R-project.org. 2012.
Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. Vegan: community ecology package 2.3–2 (2015).
Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).
Google Scholar
Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22(1), 134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x (2008).
Google Scholar
Leps, J., de Bello, F., Lavorel, S., Berman, S. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter (2006).
Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).
Google Scholar
Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Taxonomic and functional β-diversity of ants along tree plantation
chronosequences differ between contrasting biomes. Basic Appl. Ecol. 41, 1–12. https://doi.org/10.1016/j.baae.2019.08.004 (2019).
Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you .pdf. Ecol. Monogr. 83(4), 557–574. https://doi.org/10.1890/12-2010.1 (2013).
Google Scholar
Swenson, N. G. Functional and phylogenetic ecology in R (Springer, Berlin, 2014). https://doi.org/10.1007/978-1-4614-9542-0.
Google Scholar
Craven, D., Hall, J. S., Berlyn, G. P., Ashton, M. S. & van Breugel, M. Environmental filtering limits functional diversity during succession in a seasonally wet tropical secondary forest. J. Veg. Sci. 29(3), 511–520. https://doi.org/10.1111/jvs.12632 (2018).
Google Scholar
Woodcock, B. A., Pywell, R. F., Roy, D. B., Rose, R. J. & Bell, D. Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol. Cons. 125, 193–202. https://doi.org/10.1016/j.biocon.2005.03.017 (2005).
Google Scholar
Mangels, J., Fiedler, K., Schneider, F. D. & Blüthgen, N. Diversity and trait composition of moths respond to land-use intensification in grasslands: Generalists replace specialists. Biodivers. Conserv. 26(14), 3385–3405. https://doi.org/10.1007/s10531-017-1411-z (2017).
Google Scholar
Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8(1), 1–11. https://doi.org/10.1038/s41598-018-20823-1 (2018).
Google Scholar
Rubio, G. D., Nadal, M. F., Munévar, A. C., Avalos, G. & Perger, R. Iberá Wetlands: Diversity hotspot, valid ecoregion or transitional area? Perspective from a faunistic jumping spiders revision (Araneae: Salticidae). Species 19, 117–131 (2018).
Schiapelli, R. E. Arañas argentinas. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia.” (1948).
Zapata, L. & Grismando, C. Lista sistemática de arañas (Arachnida: Araneae) de la Reserva Ecológica Costanera Sur (Ciudad Autónoma de Buenos Aires, Argentina), con notas sobre su taxonomía y distribución. Rev. Mus. Argentino Cienc. Nat. 17(2), 183–211 (2015).
Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27(4), 981–1009. https://doi.org/10.1007/s10531-017-1476-8 (2018).
Google Scholar
Bao, L., et al. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay. Biodivers. Data J. (2018) (6).
Uetz, G. W. Habitat structure and spider foraging. Habitat Struct. 1948, 325–348. https://doi.org/10.1007/978-94-011-3076-9_16 (1991).
Google Scholar
Balfour, R. A. & Rypstra, A. L. The influence of habitat structure on spider density in a no-till soybean agroecosystem. J. Arachnol. 26, 221–226 (1998).
Robinson, J. V. The effect of architectural variation in habitat on a spider community: An experimental field study. Ecol. Soc. Am. 62(1), 73–80 (1981).
Chisté, M. N. et al. Losers, winners, and opportunists: How grassland land-use intensity affects orthopteran communities. Ecosphere 7(11), e01545 (2016).
Google Scholar
Blandenier, G., Bruggisser, O. T., Rohr, R. P. & Bersier, L. F. Are phenological patterns of ballooning spiders linked to habitat characteristics?. J. Arachnol. 41(2), 126–132. https://doi.org/10.1636/P12-48 (2013).
Google Scholar
De Bello, F. et al. Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 101(5), 1237–1244. https://doi.org/10.1111/1365-2745.12139 (2013).
Google Scholar
Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41(7), 1184–1193. https://doi.org/10.1111/ecog.03244 (2018).
Google Scholar
Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16(4), 440–448. https://doi.org/10.1111/j.1466-8238.2006.00305.x (2007).
Google Scholar
Source: Ecology - nature.com