in

Different land-use types equally impoverish but differentially preserve grassland species and functional traits of spider assemblages

  • 1.

    Lindenmayer, D., Cunningham, S. & Young, A. Land use intensification: Effects on agriculture, biodiversity and ecological processes (CSIRO Publishing, Collingwood, 2012).

    Book 

    Google Scholar 

  • 2.

    Gibson, D. J. Grasses and grassland ecology (Oxford University Press, Oxford, 2009).

    Google Scholar 

  • 3.

    White, R., Murray, S., & Rohweder, M. Pilot Analysis of Global Ecosystems: Grassland Ecosystems. (2000). https://doi.org/10.1021/es0032881

  • 4.

    Schmidt, A. C., Fraser, L. H., Carlyle, C. N. & Bassett, E. R. L. Does cattle grazing affect ant abundance and diversity in temperate grasslands?. Rangeland Ecol. Manag. 65(3), 292–298. https://doi.org/10.2111/REM-D-11-00100.1 (2012).

    Article 

    Google Scholar 

  • 5.

    Phifer, C. C., Knowlton, J. L., Webster, C. R., Flaspohler, D. J. & Licata, J. A. Bird community responses to afforested eucalyptus plantations in the Argentine pampas. Biodivers. Conserv. 26(13), 3073–3101. https://doi.org/10.1007/s10531-016-1126-6 (2017).

    Article 

    Google Scholar 

  • 6.

    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12(1), 22–33. https://doi.org/10.1111/j.1461-0248.2008.01255.x (2009).

    Article 
    PubMed 

    Google Scholar 

  • 7.

    Sasaki, T. et al. Nestedness and niche-based species loss in moorland plant communities. Oikos 121(11), 1783–1790. https://doi.org/10.1111/j.1600-0706.2012.20152.x (2012).

    Article 

    Google Scholar 

  • 8.

    Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x (2010).

    Article 

    Google Scholar 

  • 9.

    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29(5), 592–599. https://doi.org/10.1111/1365-2435.12345 (2015).

    Article 

    Google Scholar 

  • 10.

    Swenson, N. G. & Enquist, J. Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology 90(8), 2161–2170 (2009).

    Article 

    Google Scholar 

  • 11.

    Stubbs, W. J. & Wilson, J. B. Evidence for limiting similarity in a sand dune community. J. Ecol. 92, 557–567 (2004).

    Article 

    Google Scholar 

  • 12.

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. America 75(1), 3–35. https://doi.org/10.1890/04-0922 (2005).

    Article 

    Google Scholar 

  • 13.

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568. https://doi.org/10.1038/ncomms9568 (2015).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16(11), 646–655. https://doi.org/10.1016/S0169-5347(01)02283-2 (2001).

    Article 

    Google Scholar 

  • 15.

    Bruno, J. F. & Cardinale, B. J. Cascading effects of predator richness. Front. Ecol. Environ. 6(10), 539–546. https://doi.org/10.1890/070136 (2008).

    Article 

    Google Scholar 

  • 16.

    Avalos, G., Rubio, G. D., Bar, M. E. & González, A. Arañas (Arachnida: Araneae) asociadas a dos bosques degradados del Chaco húmedo en Corrientes, Argentina. Rev. Biol. Trop. 55(3–4), 899–909 (2007).

    PubMed 

    Google Scholar 

  • 17.

    Downie, I. S. et al. The impact of different agricultural land-uses on epigeal spider diversity in Scotland. J. Insect Conserv. 3(4), 273–286 (1999).

    Article 

    Google Scholar 

  • 18.

    Salas-Lopez, A., Violle, C., Mallia, L. & Orivel, J. Land-use change effects on the taxonomic and morphological trait composition of ant communities in French Guiana. Insect. Conserv. Divers. 11(2), 162–173. https://doi.org/10.1111/icad.12248 (2018).

    Article 

    Google Scholar 

  • 19.

    Mousseau, T. A. Ectotherms follow the converse to Bergmann’s rule. Evolution 51(2), 630. https://doi.org/10.2307/2411138 (1997).

    Article 
    PubMed 

    Google Scholar 

  • 20.

    Woolley, C., Thomas, C. F. G., Blackshaw, R. P. & Goodacre, S. L. Aerial dispersal activity of spiders sampled from farmland in southern England. J. Arachnol. 44(3), 347–358. https://doi.org/10.1636/p15-56.1 (2016).

    Article 

    Google Scholar 

  • 21.

    Rypstra, A. L., Carter, P. E., Balfour, R. A. & Marshall, S. D. Architectural features of agricultural habitats and their impact on the spider inhabitants. J. Arachnol. 27(1), 371–377. https://doi.org/10.2307/3706009 (1999).

    Article 

    Google Scholar 

  • 22.

    Tuf, I. H., Dedek, P. & Veselý, M. Does the diurnal activity pattern of carabid beetles depend on season, ground temperature and habitat?. Arch. Biol. Sci. 64(2), 721–732. https://doi.org/10.2298/ABS1202721T (2012).

    Article 

    Google Scholar 

  • 23.

    Entling, W., Schmidt-Entling, M. H., Bacher, S., Brandl, R. & Nentwig, W. Body size-climate relationships of European spiders. J. Biogeogr. 37(3), 477–485. https://doi.org/10.1111/j.1365-2699.2009.02216.x (2010).

    Article 

    Google Scholar 

  • 24.

    Blandenier, G. Ballooning of spiders (Araneae) in Switzerland: General results from an eleven-year survey. Arachnology 14(7), 308–316. https://doi.org/10.13156/arac.2009.14.7.308 (2014).

    Article 

    Google Scholar 

  • 25.

    Greenstone, M. H. Determinants of web spider species diversity: Vegetation structural diversity vs. prey availability. Oecologia 62(3), 299–304 (1984).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Morello, J., Matteucci, S. D., & Rodríguez, A. F. Ecorregiones y complejos ecosistémicos de argentina. Orientación Gráfica Editora, Buenos Aires (2012).

  • 27.

    Satorre, E. H. Cambios tecnológicos en la agricultura argentina actua. Ciencia hoy. 15(87), 6 (2005).

    Google Scholar 

  • 28.

    Viglizzo, E., La Pampa, I.C.R., Satorre, E., Solbrig, O.T., Torres, F. & Ingaramo, J. The provision of ecosystem services and human well-being in the Pampas of Argentina. Millennium Ecosystem Assessment: Full Report (2005).

  • 29.

    INTA. Instituto Nacional de Tecnología Agropecuaria (INTA). Plan De Tecnologia Regional 2009–2011, INTA Centro Regional Entre Ríos (2009).

  • 30.

    Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Ant taxonomic and functional diversity show differential response to plantation age in two contrasting biomes. For. Ecol. Manag. 437, 304–313. https://doi.org/10.1016/j.foreco.2019.01.021 (2019).

    Article 

    Google Scholar 

  • 31.

    Pinto, C. M., Santoandré, S., Zurita, G., Bellocq, M. I. & Filloy, J. Conifer plantations in grassland and subtropical forest: Does spider diversity respond different to edge effect?. J. For. Res. 23(5), 253–259. https://doi.org/10.1080/13416979.2018.1506248 (2018).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Bell, J., Wheater, C. & Cullen, W. The implications of grassland and heathland management for the conservation of spider communities: A review. J. Zool. 255, 377–387. https://doi.org/10.1017/s0952836901001479 (2001).

    Article 

    Google Scholar 

  • 33.

    Spears, L.R., & MacMahon, J.A. An experimental study of spiders in a shrub-steppe ecosystem: The effects of prey availability and shrub architecture. J. Arachnol. 40(2):218–227 (2012). http://digitalcommons.usu.edu/etd/1207/

  • 34.

    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11(7), 36–42 (2004).

    Google Scholar 

  • 35.

    Merrett, P. & Snazell, R. A comparison of pitfall trapping and vacuum sampling for assessing spider faunas on heath-land at Ashdown Forest, south-east England. Bull. Br. Arachnol. Soc. 6(1), 1–13 (1983).

    Google Scholar 

  • 36.

    Lambeets, K., Vandegehuchte, M., Jean-Pierre, M. & Dries, B. Physical defences wear you down: Progressive and. J. Anim. Ecol. 78, 281–291. https://doi.org/10.1111/j.1365-2656.2007.0 (2009).

    Article 

    Google Scholar 

  • 37.

    Duelli, P., Obrist, M. K. & Schmatz, D. R. Environment Biodiversity evaluation in agricultural landscapes: Above-ground insects (Woodhead Publishing Limited, Cambridge, 1999). https://doi.org/10.1016/B978-0-444-50019-9.50006-6.

    Book 

    Google Scholar 

  • 38.

    Munévar, A., Rubio, G. D. & Zurita, G. A. Changes in spider diversity through the growth cycle of pine plantations in the semi-deciduous Atlantic forest: The role of prey availability and abiotic conditions. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2018.03.025 (2017).

    Article 

    Google Scholar 

  • 39.

    Horváth, R., Lengyel, S., Szinetár, C. & Jakab, L. L. The effect of prey availability on spider assemblages on European black pine (Pinus nigra) bark: Spatial patterns and guild structure. Can. J. Zool. 83(2), 324–335. https://doi.org/10.1139/z05-009 (2005).

    Article 

    Google Scholar 

  • 40.

    Bonte, D., Borre, J. V., Lens, L. & Maelfait, J.-P. Geographical variation in wolf spider dispersal behaviour is related to landscape structure. Anim. Behav. 72(3), 655–662. https://doi.org/10.1016/j.anbehav.2005.11.026 (2006).

    Article 

    Google Scholar 

  • 41.

    Legendre, P., Legendre, L. Numerical ecology: Developments in environmental modelling. Developments in Environmental Modelling. 20 (1998)

  • 42.

    R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria. Internet: http://www.R-project.org. 2012.

  • 43.

    Oksanen, J., Blanchet, G., Kindt, R., Legendre, P., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. Vegan: community ecology package 2.3–2 (2015).

  • 44.

    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91(1), 299–305 (2010).

    Article 

    Google Scholar 

  • 45.

    Lavorel, S. et al. Assessing functional diversity in the field—Methodology matters!. Funct. Ecol. 22(1), 134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x (2008).

    Article 

    Google Scholar 

  • 46.

    Leps, J., de Bello, F., Lavorel, S., Berman, S. Quantifying and interpreting functional diversity of natural communities: Practical considerations matter (2006).

  • 47.

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R (Springer, Berlin, 2009).

    Book 

    Google Scholar 

  • 48.

    Santoandré, S., Filloy, J., Zurita, G. A. & Bellocq, M. I. Taxonomic and functional β-diversity of ants along tree plantation
    chronosequences differ between contrasting biomes. Basic Appl. Ecol. 41, 1–12. https://doi.org/10.1016/j.baae.2019.08.004 (2019).

  • 49.

    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you .pdf. Ecol. Monogr. 83(4), 557–574. https://doi.org/10.1890/12-2010.1 (2013).

    Article 

    Google Scholar 

  • 50.

    Swenson, N. G. Functional and phylogenetic ecology in R (Springer, Berlin, 2014). https://doi.org/10.1007/978-1-4614-9542-0.

    Article 
    MATH 

    Google Scholar 

  • 51.

    Craven, D., Hall, J. S., Berlyn, G. P., Ashton, M. S. & van Breugel, M. Environmental filtering limits functional diversity during succession in a seasonally wet tropical secondary forest. J. Veg. Sci. 29(3), 511–520. https://doi.org/10.1111/jvs.12632 (2018).

    Article 

    Google Scholar 

  • 52.

    Woodcock, B. A., Pywell, R. F., Roy, D. B., Rose, R. J. & Bell, D. Grazing management of calcareous grasslands and its implications for the conservation of beetle communities. Biol. Cons. 125, 193–202. https://doi.org/10.1016/j.biocon.2005.03.017 (2005).

    Article 

    Google Scholar 

  • 53.

    Mangels, J., Fiedler, K., Schneider, F. D. & Blüthgen, N. Diversity and trait composition of moths respond to land-use intensification in grasslands: Generalists replace specialists. Biodivers. Conserv. 26(14), 3385–3405. https://doi.org/10.1007/s10531-017-1411-z (2017).

    Article 

    Google Scholar 

  • 54.

    Martello, F. et al. Homogenization and impoverishment of taxonomic and functional diversity of ants in Eucalyptus plantations. Sci. Rep. 8(1), 1–11. https://doi.org/10.1038/s41598-018-20823-1 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 55.

    Rubio, G. D., Nadal, M. F., Munévar, A. C., Avalos, G. & Perger, R. Iberá Wetlands: Diversity hotspot, valid ecoregion or transitional area? Perspective from a faunistic jumping spiders revision (Araneae: Salticidae). Species 19, 117–131 (2018).

    Google Scholar 

  • 56.

    Schiapelli, R. E. Arañas argentinas. Museo Argentino de Ciencias Naturales “Bernardino Rivadavia.” (1948).

  • 57.

    Zapata, L. & Grismando, C. Lista sistemática de arañas (Arachnida: Araneae) de la Reserva Ecológica Costanera Sur (Ciudad Autónoma de Buenos Aires, Argentina), con notas sobre su taxonomía y distribución. Rev. Mus. Argentino Cienc. Nat. 17(2), 183–211 (2015).

    Google Scholar 

  • 58.

    Argañaraz, C. I., Rubio, G. D. & Gleiser, R. M. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27(4), 981–1009. https://doi.org/10.1007/s10531-017-1476-8 (2018).

    Article 

    Google Scholar 

  • 59.

    Bao, L., et al. Spider assemblages associated with different crop stages of irrigated rice agroecosystems from eastern Uruguay. Biodivers. Data J. (2018) (6).

  • 60.

    Uetz, G. W. Habitat structure and spider foraging. Habitat Struct. 1948, 325–348. https://doi.org/10.1007/978-94-011-3076-9_16 (1991).

    Article 

    Google Scholar 

  • 61.

    Balfour, R. A. & Rypstra, A. L. The influence of habitat structure on spider density in a no-till soybean agroecosystem. J. Arachnol. 26, 221–226 (1998).

    Google Scholar 

  • 62.

    Robinson, J. V. The effect of architectural variation in habitat on a spider community: An experimental field study. Ecol. Soc. Am. 62(1), 73–80 (1981).

    Google Scholar 

  • 63.

    Chisté, M. N. et al. Losers, winners, and opportunists: How grassland land-use intensity affects orthopteran communities. Ecosphere 7(11), e01545 (2016).

    Article 

    Google Scholar 

  • 64.

    Blandenier, G., Bruggisser, O. T., Rohr, R. P. & Bersier, L. F. Are phenological patterns of ballooning spiders linked to habitat characteristics?. J. Arachnol. 41(2), 126–132. https://doi.org/10.1636/P12-48 (2013).

    Article 

    Google Scholar 

  • 65.

    De Bello, F. et al. Evidence for scale- and disturbance-dependent trait assembly patterns in dry semi-natural grasslands. J. Ecol. 101(5), 1237–1244. https://doi.org/10.1111/1365-2745.12139 (2013).

    Article 

    Google Scholar 

  • 66.

    Gibb, H. et al. Habitat disturbance selects against both small and large species across varying climates. Ecography 41(7), 1184–1193. https://doi.org/10.1111/ecog.03244 (2018).

    Article 

    Google Scholar 

  • 67.

    Entling, W., Schmidt, M. H., Bacher, S., Brandl, R. & Nentwig, W. Niche properties of Central European spiders: Shading, moisture and the evolution of the habitat niche. Glob. Ecol. Biogeogr. 16(4), 440–448. https://doi.org/10.1111/j.1466-8238.2006.00305.x (2007).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    MIT unveils a new action plan to tackle the climate crisis

    Niche partitioning shaped herbivore macroevolution through the early Mesozoic