in

Different patterns of human activities in nature during Covid-19 pandemic and African swine fever outbreak confirm direct impact on wildlife disruption

  • 1.

    DeStefano, S. & DeGraaf, R. M. Exploring the ecology of suburban wildlife. Front. Ecol. Environ. 1, 95 (2003).

    Article 

    Google Scholar 

  • 2.

    Treves, A., Wallace, R. B., Naughton-Treves, L. & Morales, A. Co-managing human–wildlife conflicts: a review. Hum. Dimens. Wildl. 11, 383–396 (2006).

    Article 

    Google Scholar 

  • 3.

    Oberosler, V., Groff, C., Iemma, A., Pedrini, P. & Rovero, F. The influence of human disturbance on occupancy and activity patterns of mammals in the Italian Alps from systematic camera trapping. Mamm. Biol. 87, 50–61 (2017).

    Article 

    Google Scholar 

  • 4.

    Tyler, N. J. C. Short-term behavioural responses of Svalbard reindeer Rangifer tarandus platyrhynchus to direct provocation by a snowmobile. Biol. Conserv. 56, 179–194 (1991).

    Article 

    Google Scholar 

  • 5.

    Tolvanen, A. & Kangas, K. Tourism, biodiversity and protected areas—review from northern Fennoscandia. J. Environ. Manage. 169, 58–66 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Ballantyne, M. & Pickering, C. M. Tourism and recreation: a common threat to IUCN red-listed vascular plants in Europe. Biodivers. Conserv. 22, 3027–3044 (2013).

    Article 

    Google Scholar 

  • 7.

    Pickering, C. M., Hill, W., Newsome, D. & Leung, Y. F. Comparing hiking, mountain biking and horse riding impacts on vegetation and soils in Australia and the United States of America. J. Environ. Manage. 91, 551–562 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Coppes, J., Ehrlacher, J., Thiel, D., Suchant, R. & Braunisch, V. Outdoor recreation causes effective habitat reduction in capercaillie Tetrao urogallus: a major threat for geographically restricted populations. J. Avian Biol. 48, 1583–1594 (2017).

    Article 

    Google Scholar 

  • 9.

    Siikamäki, P., Kangas, K., Paasivaara, A. & Schroderus, S. Biodiversity attracts visitors to national parks. Biodivers. Conserv. 24, 2521–2534 (2015).

    Article 

    Google Scholar 

  • 10.

    Gerstenberg, T., Baumeister, C. F., Schraml, U. & Plieninger, T. Hot routes in urban forests: the impact of multiple landscape features on recreational use intensity. Landsc. Urban Plan. 203, 103888 (2020).

    Article 

    Google Scholar 

  • 11.

    Fischer, L. K. & Kowarik, I. Dogwalkers’ views of urban biodiversity across five European cities. Sustain. 12, 1–11 (2020).

    Google Scholar 

  • 12.

    Lundgren, J. O. Polar tourism: tourism in the Arctic and Antarctic regions. in The tourism space penetration processes in northern Canada and Scandinavia: a comparison 43–61 (1995).

  • 13.

    Balmford, A. et al. Walk on the wild side: estimating the global magnitude of visits to protected areas. PLoS Biol. 13, 1–6 (2015).

    Article 
    CAS 

    Google Scholar 

  • 14.

    George, S. L. & Crooks, K. R. Recreation and large mammal activity in an urban nature reserve. Biol. Conserv. 133, 107–117 (2006).

    Article 

    Google Scholar 

  • 15.

    Zhong, L., Zhang, X., Deng, J. & Pierskalla, C. Recreation ecology research in China’s protected areas: progress and prospect. Ecosyst. Heal. Sustain. 6 (2020).

  • 16.

    Mancini, F., Leyshon, B., Manson, F., Coghill, G. M. & Lusseau, D. Monitoring tourists’ specialisation and implementing adaptive governance is necessary to avoid failure of the wildlife tourism commons. Tour. Manag. 81, 104160 (2020).

    Article 

    Google Scholar 

  • 17.

    Abate, M., Christidis, P. & Purwanto, A. J. Government support to airlines in the aftermath of the COVID-19 pandemic. J. Air Transp. Manag. 89, 101931 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Castanho, R. A. et al. The impact of SARS-CoV-2 outbreak on the accommodation selection of Azorean tourists. A study based on the assessment of the Azores population’s attitudes. Sustainability 12, 9990 (2020).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Neupane, D. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biol. 2020, 19–21 (2020).

    Article 

    Google Scholar 

  • 20.

    Herrero, C. & Villar, A. A synthetic indicator on the impact of COVID-19 on the community’s health. PLoS ONE 15, 1–14 (2020).

    Google Scholar 

  • 21.

    World Health Organization (WHO). Coronavirus Disease (COVID-19) Situation Reports Updates 27 September 2020. World Health Organization Technical Report Series (2020).

  • 22.

    da Silva, F. C. T. & Neto, M. L. R. Psychological effects caused by the COVID-19 pandemic in health professionals: a systematic review with meta-analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 104, 110 (2021).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Sohrabi, C. et al. World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 76, 71–76 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Hellewell, J. et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob. Heal. 8, e488–e496 (2020).

    Article 

    Google Scholar 

  • 25.

    Steidtmann, D., McBride, S. & Mishkind, M. C. Experiences of mental health clinicians and staff in rapidly converting to full-time telemental health and work from home during the COVID-19 pandemic. Telemed. e-Health 27(7), 785–791 (2021).

    Article 

    Google Scholar 

  • 26.

    Chiu, W. A., Fischer, R. & Ndeffo-Mbah, M. L. State-level needs for social distancing and contact tracing to contain COVID-19 in the United States. Nat. Hum. Behav. 4, 1080–1090 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. 4, 1156–1159 (2020).

    PubMed 
    Article 

    Google Scholar 

  • 28.

    Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Ghahremanloo, M., Lops, Y., Choi, Y. & Mousavinezhad, S. Impact of the COVID-19 outbreak on air pollution levels in East Asia. Sci. Total Environ. 754, 142226 (2021).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Rosenbloom, D. & Markard, J. A COVID-19 recovery for climate. Science 368, 447–447 (2020).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Lokhandwala, S. & Gautam, P. Indirect impact of COVID-19 on environment: a brief study in Indian context. Environ. Res. 188, 109807 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Manenti, R. et al. The good, the bad and the ugly of COVID-19 lockdown effects on wildlife conservation: insights from the first European locked down country. Biol. Conserv. 249, 108728 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 8–11 (2020).

    Article 

    Google Scholar 

  • 34.

    Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Conserv. 248, 108665 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Arias, M., Jurado, C., Gallardo, C., Fernández-Pinero, J. & Sánchez-Vizcaíno, J. M. Gaps in African swine fever: analysis and priorities. Transbound. Emerg. Dis. 65, 235–247 (2018).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Galindo, I. & Alonso, C. African swine fever virus: a review. Viruses 9, 103 (2017).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Taylor, R. A. et al. Predicting spread and effective control measures for African swine fever—should we blame the boars?. Transbound Emerg. Dis. https://doi.org/10.1111/tbed.13690 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Mason-D’Croz, D. et al. Modelling the global economic consequences of a major African swine fever outbreak in China. Nat. Food. 1, 221–228 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Podgórski, T. & Śmietanka, K. Do wild boar movements drive the spread of African Swine Fever?. Transbound. Emerg. Dis. 65, 1588–1596 (2018).

    PubMed 
    Article 

    Google Scholar 

  • 40.

    Petit, K. et al. Assessment of the impact of forestry and leisure activities on wild boar spatial disturbance with a potential application to ASF risk of spread. Transbound. Emerg. Dis. 67, 1164–1176 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Watanabe, S. & Wahlqvist, M. L. Covid-19 and dietary socioecology: Risk minimisation. Asia Pac. J. Clin. Nutr. 29, 207–219 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 42.

    Geng, D., Innes, J., Wu, W. & Wang, G. Impacts of COVID-19 pandemic on urban park visitation: a global analysis. J. For. Res. https://doi.org/10.1007/s11676-020-01249-w (2020).

    Article 

    Google Scholar 

  • 43.

    Godbersen, H., Hofmann, L. A. & Ruiz-Fernández, S. How people evaluate anti-corona measures for their social spheres: attitude, subjective norm, and perceived behavioral control. Front. Psychol. 11, 1–20 (2020).

    Article 

    Google Scholar 

  • 44.

    Cukor, J. et al. Wild boar deathbed choice in relation to ASF : Are there any differences between positive and negative carcasses? Prev. Vet. 177, 1–7 (2020).

    Google Scholar 

  • 45.

    McGinlay, J. et al. The impact of COVID-19 on the management of European protected areas and policy implications. Forests 11, 1–15 (2020).

    Article 

    Google Scholar 

  • 46.

    Derks, J., Giessen, L. & Winkel, G. COVID-19-induced visitor boom reveals the importance of forests as critical infrastructure. For. Policy Econ. 118, 102253 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Venter, Z. S., Barton, D. N., Gundersen, V., Figari, H., Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 15, 1–11 (2020).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Jůza, R., Jarský, V., Riedl, M., Zahradník, D. & Šišák, L. Possibilities for harmonisation between recreation services and their production within the forest sector—a case study of municipal forest enterprise hradec Králové (CZ). Forests 12, 13 (2020).

    Article 

    Google Scholar 

  • 49.

    Dellicour, S. et al. Unravelling the dispersal dynamics and ecological drivers of the African swine fever outbreak in Belgium. J. Appl. Ecol. 57, 1619–1629 (2020).

    Article 

    Google Scholar 

  • 50.

    Carnol, M. et al. Ecosystem services of mixed species forest stands and monocultures: comparing practitioners and scientists perceptions with formal scientific knowledge. Forestry 87, 639–653 (2014).

    Article 

    Google Scholar 

  • 51.

    Dušek, D., Kacálek, D., Novák, J. & Slodičák, M. Public perception of recreation needs—a questionnaire study from Ostrava urban forests (Czech Republic). Zpravy Lesn. Vyzk Rep. For. Res. 62, 174–181 (2017).

    Google Scholar 

  • 52.

    Meo, I. D., Paletto, A. & Cantiani, M. G. The attractiveness of forests: Preferences and perceptions in a mountain community in Italy. Ann. For. Res. 58, 145–156 (2015).

    Google Scholar 

  • 53.

    Sadecký, D., Pejcha, J. & Šišák, L. Analysis of the public opinion on forest and forest management in the žďárské vrchy protected landscape area, czech republic [Analýza názorů veřejnosti na les a lesní hospodářství v chráněné krajinné oblasti žďárské vrchy]. Zpravy Lesn. Vyzk. 59, 11–17 (2014).

    Google Scholar 

  • 54.

    Ciuti, S. et al. Effects of Humans on Behaviour of Wildlife Exceed Those of Natural Predators in a Landscape of Fear. PLoS ONE 7, 1–16 (2012).

    Article 
    CAS 

    Google Scholar 

  • 55.

    Palacios, M. G., D’Amico, V. L. & Bertellotti, M. Ecotourism effects on health and immunity of Magellanic penguins at two reproductive colonies with disparate touristic regimes and population trends. Conserv. Physiol. 6, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • 56.

    Schuttler, S. G. et al. Deer on the lookout: how hunting, hiking and coyotes affect white-tailed deer vigilance. J. Zool. 301, 320–327 (2017).

    Article 

    Google Scholar 

  • 57.

    Preisser, E. L., Bolnick, D. I. & Benard, M. F. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 86, 501–509 (2005).

    Article 

    Google Scholar 

  • 58.

    Creel, S., Winnie, J., Maxwell, B., Hamlin, K. & Creel, M. Elk alter habitat selection as an antipredator response to wolves. Ecology 86, 3387–3397 (2005).

    Article 

    Google Scholar 

  • 59.

    French, S. S., Denardo, D. F., Greives, T. J., Strand, C. R. & Demas, G. E. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus). Horm. Behav. 58, 792–799 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Beehner, J. C. & Bergman, T. J. The next step for stress research in primates: to identify relationships between glucocorticoid secretion and fitness. Horm. Behav. 91, 68–83 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Dhabhar, F. S. Effects of stress on immune function: the good, the bad, and the beautiful. Immunol. Res. 58, 193–210 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    Almasi, B., Béziers, P., Roulin, A. & Jenni, L. Agricultural land use and human presence around breeding sites increase stress-hormone levels and decrease body mass in barn owl nestlings. Oecologia 179, 89–101 (2015).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Szwagrzyk, J. et al. Effects of species and environmental factors on browsing frequency of young trees in mountain forests affected by natural disturbances. For. Ecol. Manage. 474, 1–13 (2020).

    Article 

    Google Scholar 

  • 65.

    Möst, L., Hothorn, T., Müller, J. & Heurich, M. Creating a landscape of management: unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manage. 338, 46–56 (2015).

    Article 

    Google Scholar 

  • 66.

    Cukor, J. et al. Effects of bark stripping on timber production and structure of Norway Spruce forests in relation to climatic factors. Forests 10, 13–17 (2019).

    Article 

    Google Scholar 

  • 67.

    Vacek, Z. et al. Bark stripping, the crucial factor affecting stem rot development and timber production of Norway spruce forests in Central Europe. For. Ecol. Manage. 474, 118360 (2020).

    Article 

    Google Scholar 

  • 68.

    Barrueto, M., Ford, A. T. & Clevenger, A. P. Anthropogenic effects on activity patterns of wildlife at crossing structures. Ecosphere 5, 1–19 (2014).

    Article 

    Google Scholar 

  • 69.

    Ignatavičius, G. et al. Temporal patterns of ungulate-vehicle collisions in a sparsely populated country. Eur. J. Wildl. Res. 66, 1–9 (2020).

    Article 

    Google Scholar 

  • 70.

    Price, M. V., Strombom, E. H. & Blumstein, D. T. Human activity affects the perception of risk by mule deer. Curr. Zool. 60, 693–699 (2014).

    Article 

    Google Scholar 

  • 71.

    Romero, L. M., Dickens, M. J. & Cyr, N. E. The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm. Behav. 55, 375–389 (2009).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Cukor, J., Havránek, F., Rohla, J. & Bukovjan, K. Estimation of red deer density in the west part of the Ore Mts (Czech Republic). Zpravy Lesn. Vyzk. Rep. For. Res. 62, 288–295 (2017).

    Google Scholar 

  • 73.

    Carpio, A. J., Apollonio, M. & Acevedo, P. Wild ungulate overabundance in Europe: contexts, causes, monitoring and management recommendations. Mamm. Rev. 51, 95–108 (2021).

    Article 

    Google Scholar 

  • 74.

    Iacolina, L., Corlatti, L., Buzan, E., Safner, T. & Šprem, N. Hybridisation in European ungulates: an overview of the current status, causes, and consequences. Mamm. Rev. 49, 45–59 (2019).

    Article 

    Google Scholar 

  • 75.

    Kangas, K., Luoto, M., Ihantola, A., Tomppo, E. & Siikamäki, P. Recreation-induced changes in boreal bird communities in protected areas. Ecol. Appl. 20, 1775–1786 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 76.

    Tost, D., Strauß, E., Jung, K. & Siebert, U. Impact of tourism on habitat use of black grouse (Tetrao tetrix) in an isolated population in northern Germany. PLoS ONE 15, e0238660 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 77.

    Köppen, W. Das Geographische System der Klimate, Handbuch der Klimatologie (Gebrüder Borntraeger, 1936).

    Google Scholar 

  • 78.

    Rob, F. et al. Compliance, safety concerns and anxiety in patients treated with biologics for psoriasis during the COVID-19 pandemic national lockdown: a multicenter study in the Czech Republic. J. Eur. Acad. Dermatol. Venereol. 76, jdv.16771 (2020).

    Google Scholar 

  • 79.

    Government of the Czech Republic. Measures adopted by the Czech Government against the coronavirus. (2021). Available at: https://www.vlada.cz/en/media-centrum/aktualne/measures-adopted-by-the-czech-government-against-coronavirus-180545/. (Accessed: 5th February 2021).

  • 80.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016).


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization