Collingsworth, P. D. et al. Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America. Rev. Fish Biol. Fish. 27, 363–391 (2017).
Google Scholar
Hilborn, R. & Walters, C. J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and the Uncertainty (Routledge, Chapman and Hall Inc., 1992).
Google Scholar
Bean, C. W., Winfield, I. J. & Fletcher, J. M. Stock assessment of the Arctic charr (Salvelinus alpinus) population in Loch Ness, UK in stock assessment. In Inland Fisheries (ed. Cowx, I. G.) 206–223 (Blackwell Scientific Publications, 1996).
Emmrich, M. et al. Strong correspondence between gillnet catch per effort and hydroacoustically derived fish biomass in stratified lakes. Freshw. Biol. 57, 2436–2448 (2012).
Google Scholar
CEN (European Committee for Standardization). Water quality – sampling of fish with multi-mesh gillnets. European Committee for Standardization, European Standard EN 14757:2015 (Brussels, 2015).
Murphy, B. & Willis, D. W. Fisheries Techniques 2nd edn. (American Fisheries Society, 1996).
Kinzelbach, R. Neozoans in European waters—Exemplifying the worldwide process of invasion and species mixing. Cell. Mol. Life Sci. 51, 526–538 (1995).
Google Scholar
Cerwenka, A. F. Phenotypic and genetic differentiation of invasive gobies in the upper Danube River. Dissertation (Technische
Universität München, 2014).
Byström, P. et al. Declining coastal piscivore populations in the Baltic Sea: Where and when do sticklebacks matter?. Ambio 44, 462–471 (2015).
Google Scholar
Ustups, D. et al. Diet overlap between juvenile flatifish and the invasive round goby in the central Baltic Sea. J. Sea Res. 107, 121–129 (2016).
Google Scholar
Jackson, D. A. & Harvey, H. H. Qualitative and quantitative sampling of lake fish communities. Can. J. Fish. Aquat. Sci. 54, 2807–2813 (1997).
Google Scholar
Argyle, R. L. Acoustics as a tool for the assessment of Great Lakes forage fishes. Fish. Res. 14, 179–196 (1992).
Google Scholar
Jurvelius, J., Leinikki, J., Mamylov, V. & Pushkin, S. Stock assessment of pelagic three-spined stickleback (Gasterosteus aculeatus): A simultaneous up- and down-looking echo-sounding study. Fish. Res. 27, 227–241 (1996).
Google Scholar
Horne, J. K. Acoustic approaches to remote species identification: A review. Fish. Oceanogr. 9, 356–371 (2000).
Google Scholar
Godlewska, M., Świerzowski, A. & Winfield, I. J. Hydroacoustics as a tool for studies of fish and their habitat. Ecohydrol. Hydrobiol. 4, 417–427 (2004).
Muška, M. et al. Real-time distribution of pelagic fish: combining hydroacoustics, GIS and spatial modelling at a fine spatial scale. Sci. Rep. 8, 5381. https://doi.org/10.1038/s41598-018-23762-z (2018).
Google Scholar
Berger, L. et al. Acoustic target classification. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.4567 (2018).
Google Scholar
Emmrich, M., Helland, I. P., Busch, S., Schiller, S. & Mehner, T. Hydroacoustic estimates of fish densities in comparison with stratified pelagic trawl sampling in two deep, coregonid-dominated lakes. Fish. Res. 105, 178–186 (2010).
Google Scholar
DuFour, M. R., Qian, S. S., Mayer, C. M. & Vandergoot, C. S. Embracing uncertainty to reduce bias in hydroacoustic species apportionment. Fish. Res. https://doi.org/10.1016/j.fishres.2020.105750 (2021).
Google Scholar
Cabreira, A. G., Tripode, M. & Madirolas, A. Artificial neural networks for fish-species identification. ICES J. Mar. Sci. 66, 1119–1129 (2009).
Google Scholar
Robotham, H., Bosch, P., Gutierrez-Estrada, J., Castillo, J. & Pulido-Calvo, I. Acoustic identification of small pelagic fish species in Chile using support vector machines and neural networks. Fish. Res. 102, 115–122 (2010).
Google Scholar
Taylor, J. C. & Maxwell, D. L. Hydroacoustics: lakes and reservoirs. in Salmonid Field Protocols Handbook: Techniques for Assessing Status and Trends in Salmon and Trout Populations (ed. Johnson, D. H. et al.) 153–172 (American Fisheries Society in association with State of the Salmon, 2007).
Parker-Stetter, S. L., Rudstam, L. G., Sullivan, L. G. & Warner, D. M. Standard operating procedures for fisheries acoustic surveys in the Great Lakes. Great Lakes Fisheries Commission Special Publication 09-01 (2009).
Guillard, J., Perga, M. E., Colon, M. & Angeli, N. Hydroacoustic assessment of young-of-the-year perch, Perca fluviatilis, population dynamics in an oligotrophic lake (Lake Annecy, France). Fish. Manag. Ecol. 13, 319–327 (2006).
Google Scholar
Winfield, I. J., Fletcher, J. M., James, J. B. & Bean, J. B. Assessment of fish populations in still waters using hydroacoustics and survey gill netting: Experiences with Arctic charr (Salvelinus alpinus) in the UK. Fish. Res. 96, 30–38 (2009).
Google Scholar
Yule, D. L., Lori, M. E., Cachera, S., Colon, M. & Guillard, J. Comparing two fish sampling standards over time: Largely congruent results but with caveats. Freshw. Biol. 58, 2074–2088 (2013).
Google Scholar
DuFour, M. R., Song, S. Q., Mayer, C. M. & Vandergoot, C. S. Evaluating catchability in a large-scale gillnet survey using hydroacoustics: Making the case for coupled surveys. Fish. Res. 211, 309–318 (2019).
Google Scholar
Haralabous, J. & Georgakarakos, S. Artificial neural networks as a tool for species identification of fish schools. ICES J. Mar. Sci. 53, 173–180 (1996).
Google Scholar
Zakharia, M. E., Magand, F., Hetroit, F. & Diner, N. Wideband sounder for fish species identification at sea. ICES J. Mar. Sci. 53, 203–208 (1996).
Google Scholar
Fernandes, P. G. Classification trees for species identification of fish-school echo traces. ICES J. Mar. Sci. 66, 1073–1080 (2009).
Google Scholar
Eckmann, R. A hydroacoustic study of the pelagic spawning behavior of whitefish (Coregonus lavaretus) in lake constance. Can. J. Fish. Aquat. Sci. 48, 995–1002 (1991).
Google Scholar
Eckmann, R. & Engesser, B. Reconstructing the build-up of a pelagic stickleback (Gasterosteus aculeatus) population using hydroacoustics. Fish. Res. 210, 189–192 (2018).
Google Scholar
Peltonen, H., Ruuhijärvi, J., Malinen, T. & Horppila, J. Estimation of roach (Rutilus rutilus (L.)) and smelt (Osmerus eperlanus (L.)) stocks with virtual population analysis. Hydroacoustics and Gillnet CPUE. Fish. Res. 44, 25–36 (1999).
Google Scholar
MacLennan, D. N., Fernandes, P. G. & Dalen, J. A consistent approach to definitions and symbols in fisheries acoustics. ICES J. Mar. Sci. 59, 365–369 (2002).
Google Scholar
Korneliussen, R. J. The acoustic identification of Atlantic mackerel. ICES J. Mar. Sci. 67, 1749–1758 (2010).
Google Scholar
Langkau, M. C., Balk, H., Schmidt, M. B. & Borcherding, J. Can acoustic shadows identify fish species? A novel application of imaging sonar data. Fish. Manag. Ecol. 19, 313–322 (2012).
Google Scholar
Boswell, K. M., Wilson, M. P. & Cowan, J. H. Jr. A semiautomated approach to estimating fish size, abundance, and behavior from dual-frequency identification sonar (DIDSON) data. N. Am. J. Fish. Manag. 28, 799–807 (2008).
Google Scholar
Crossman, J. A., Martel, G., Johnson, P. N. & Bray, K. The use of Dual-Frequency Identification SONar (DIDSON) to document white sturgeon activity in the Columbia River, Canada. J. Appl. Ichthyol. 27, 53–57 (2011).
Google Scholar
Rakowitz, G. et al. Use of high-frequency imaging sonar (DIDSON) to observe fish behavior towards a surface trawl. Fish. Res. 123–124, 37–48 (2012).
Google Scholar
Skowronski, M. D. & Harris, J. G. Automatic detection of microchiroptera echolocation calls from field recordings using machine learning algorithms. J. Acoust. Soc. Am. 119, 1817–1833 (2005).
Google Scholar
Witten, I. H. & Frank, E. Data Mining: Practical Machine Learning Tools and Techniques 4th edn. (Morgan Kaufmann USA, 2017).
Google Scholar
Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349(6245), 255–260 (2015).
Google Scholar
Jech, J. M., Lawson, G. L. & Lavery, A. C. Wideband (15–260 kHz) acoustic volume backscattering spectra of Northern krill (Meganyctiphanes norvegica) and butterfish (Peprilus triacanthus). ICES J. Mar. Sc. 74, 2249–2261 (2017).
Google Scholar
Lavery, A. C., Bassett, C., Lawson, G. L. & Jech, J. M. Exploiting signal processing approaches for broadband echosounders. ICES J. of Mar. Sci. 74, 2262–2275 (2017).
Google Scholar
Bassett, C., De Robertis, A. & Wilson, C. D. Broadband echosounder measurements of the frequency response of fishes and euphausiids in the Gulf of Alaska. ICES J. Mar. Sci. 75, 1131–1142 (2018).
Google Scholar
Demer, D. A. et al. 2016 USA–Norway EK80 Workshop Report: Evaluation of a wideband echosounder for fisheries and marine ecosystem science. ICES Coop. Res. Rep. https://doi.org/10.17895/ices.pub.2318 (2017).
Google Scholar
Tuzlukov, V. Signal Processing in Radar Systems 1st edn. (CRC Press Taylor & Francis Group USA, 2013).
Google Scholar
Baer, J., Eckmann, R., Rösch, R., Arlinghaus, R. & Brinker, A. Managing upper lake constance fishery in a multi-sector policy landscape: Beneficiary and victim of a century of anthropogenic trophic change. In Inter-Sectoral Governance of Inland Fisheries (eds Song, A. M. et al.) 32–47 (TBTI Publication Series, 2017).
Roch, S., von Ammon, L., Geist, J. & Brinker, A. Foraging habits of invasive three-spined sticklebacks (Gasterosteus aculeatus)—Impacts on fisheries yield in Upper Lake Constance. Fish. Res. 204, 172–180 (2018).
Google Scholar
Rösch, R., Baer, J. & Brinker, A. Impact of the invasive three-spined stickleback (Gasterosteus aculeatus) on relative abundance and growth of native pelagic whitefish (Coregonus wartmanni) in Upper Lake Constance. Hydrobiol. 824, 255–270 (2018).
Google Scholar
Balk, H., & Lindem, T. Sonar4 and Sonar5-Pro Post processing systems Operator manual, version 6.0.3. (2018).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).
Degan, D. J. & Wilson, W. Comparison of four hydroacoustic frequencies for sampling pelagic fish populations in Lake Texoma. N. Am. J. Fish. Manag. 15, 924–932 (1995).
Google Scholar
Godlewska, M. et al. Hydroacoustic measurements at two frequencies: 70 and 120 kHz—Consequences for fish stock estimation. Fish. Res. 96, 11–16 (2009).
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
Google Scholar
Cutler, D. R. et al. Random forests for classification in ecology. Ecology 88, 2783–2792 (2007).
Google Scholar
Oppel, S. et al. Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biol. Cons. 156, 94–104 (2012).
Google Scholar
Kuhn, M. Caret: Classification and Regression Training. R package version 6.0-81. https://CRAN.R-project.org/package=caret (2018).
Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008).
Google Scholar
Lawson, G. J., Barange, M. & Fréon, P. Species identification of pelagic fish schools on the South African continental shelf using acoustic descriptors and ancillary information. ICES J. Mar. Sci. 58, 275–287 (2001).
Google Scholar
Simmonds, E. J., Armstrong, F. & Copland, P. J. Species identification using wideband backscatter with neural network and discriminant analysis. ICES J. Mar. Sci. 53, 189–195 (1996).
Google Scholar
Bergström, U. et al. Stickleback increase in the Baltic Sea—A thorny issue for coastal predatory fish. Estuar. Coast. Shelf Sci. 163, 134–142 (2015).
Google Scholar
Pepin, T. & Shears, T. H. Influence of body size and alternate prey abundance on the risk of predation to fish larvae. Mar. Ecol. Prog. Ser. 128, 279–285 (1995).
Google Scholar
Frouzová, J., Kubečka, J., Balk, H. & Frouz, J. Target strength of some European fish species and its dependence onfish body parameters. Fish. Res. 75, 86–96 (2005).
Google Scholar
Marques, D. A., Lucek, K., Sousa, V. C., Excoffier, L. & Seehausen, O. Admixture between old lineages facilitated contemporary ecological speciation in Lake Constance stickleback. Nat. Commun. 10, 4240. https://doi.org/10.1038/s41467-019-12182-w (2019).
Google Scholar
Source: Ecology - nature.com