Simó, R. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol. Evol. 16, 287–294 (2001).
Google Scholar
Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655–661 (1987).
Google Scholar
Wang, S., Maltrud, M. E., Burrows, S. M., Elliott, S. M. & Cameron-Smith, P. Impacts of shifts in phytoplankton community on clouds and climate via the sulfur cycle. Glob. Biogeochem. Cycles 32, 1005–1026 (2018).
Google Scholar
Wolfe, G. V., Steinke, M. & Kirst, G. O. Grazing-activated chemical defence in a unicellular marine alga. Nature 387, 894–897 (1997).
Google Scholar
Seymour, J., Simó, R., Ahmed, T. & Stocker, R. Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329, 342–345 (2010).
Google Scholar
Alcolombri, U. et al. Identification of the algal dimethyl sulfide-releasing enzyme: a missing link in the marine sulfur cycle. Science 348, 1466–1469 (2015).
Google Scholar
Alcolombri, U., Lei, L., Meltzer, D., Vardi, A. & Tawfik, D. S. Assigning the algal source of dimethylsulfide using a selective lyase inhibitor. ACS Chem. Biol. 12, 41–46 (2017).
Google Scholar
Kettle, A. J. & Andreae, M. O. Flux of dimethylsulfide from the oceans: a comparison of updated data sets and flux models. J. Geophys. Res. Atmos. 105, 26793–26808 (2000).
Google Scholar
Carpenter, L. J., Archer, S. D. & Beale, R. Ocean–atmosphere trace gas exchange. Chem. Soc. Rev. 41, 6473–6506 (2012).
Google Scholar
Franklin, D. J., Steinke, M., Young, J., Probert, I. & Malin, G. Dimethylsulphoniopropionate (DMSP), DMSP-lyase activity (DLA) and dimethylsulphide (DMS) in 10 species of coccolithophore. Mar. Ecol. Prog. Ser. 410, 13–23 (2010).
Google Scholar
Keller, M. D. Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol. Oceanogr. 6, 375–382 (1989).
Curson, A. R. J. et al. DSYB catalyses the key step of dimethylsulfoniopropionate biosynthesis in many phytoplankton. Nat. Microbiol. 3, 430–439 (2018).
Google Scholar
Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for DMSP and DMS in marine algae. Nature 418, 317–320 (2002).
Google Scholar
Kirst, G. O. in Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds (eds Kiene, R. P. et al.) 121−129 (Springer, 1996).
Darroch, L. et al. Effect of short-term light- and UV-stress on DMSP, DMS, and DMSP lyase activity in Emiliania huxleyi. Aquat. Microb. Ecol. 74, 173–185 (2015).
Barak-Gavish, N. et al. Bacterial virulence against an oceanic bloom-forming phytoplankter is mediated by algal DMSP. Sci. Adv. 4, eaau5716 (2018).
Google Scholar
Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98–101 (2015).
Google Scholar
Garcés, E., Alacid, E., Reñé, A., Petrou, K. & Simó, R. Host-released dimethylsulphide activates the dinoflagellate parasitoid Parvilucifera sinerae. ISME J. 7, 1065–1068 (2013).
Google Scholar
Steinke, M., Stefels, J. & Stamhuis, E. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51, 1925–1930 (2006).
Google Scholar
Breckels, M., Bode, N., Codling, E. & Steinke, M. Effect of grazing-mediated dimethyl sulfide (DMS) production on the swimming behavior of the copepod Calanus helgolandicus. Mar. Drugs 11, 2486 (2013).
Google Scholar
Procter, J., Hopkins, F. E., Fileman, E. S. & Lindeque, P. K. Smells good enough to eat: dimethyl sulfide (DMS) enhances copepod ingestion of microplastics. Mar. Pollut. Bull. 138, 1–6 (2019).
Google Scholar
Foretich, M. A., Paris, C. B., Grosell, M., Stieglitz, J. D. & Benetti, D. D. Dimethyl sulfide is a chemical attractant for reef fish larvae. Sci. Rep. 7, 2498 (2017).
Google Scholar
Savoca, M. S. & Nevitt, G. A. Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc. Natl Acad. Sci. USA 111, 4157–4161 (2014).
Google Scholar
Wright, K. L. B., Pichegru, L. & Ryan, P. G. Penguins are attracted to dimethyl sulphide at sea. J. Exp. Biol. 214, 2509–2511 (2011).
Google Scholar
Owen, K. et al. Natural dimethyl sulfide gradients would lead marine predators to higher prey biomass. Commun. Biol. 4, 149 (2021).
Google Scholar
Wolfe, G. V. & Steinke, M. Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi. Limnol. Oceanogr. 41, 1151–1160 (1996).
Google Scholar
Simó, R. et al. The quantitative role of microzooplankton grazing in dimethylsulfide (DMS) production in the NW Mediterranean. Biogeochemistry 141, 125–142 (2018).
Google Scholar
Evans, C., Kadner, S. V. & Darroch, L. J. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol. Oceanogr. 52, 1036–1045 (2007).
Google Scholar
Kiene, R. P. Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56, 3292–3297 (1990).
Google Scholar
Bullock, H. A., Luo, H. & Whitman, W. B. Evolution of dimethylsulfoniopropionate metabolism in marine phytoplankton and bacteria. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00637 (2017).
Strom, S. et al. Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS-producing phytoplankter Emiliania huxleyi. Limnol. Oceanogr. 48, 217–229 (2003).
Google Scholar
Calbet, A. & Landry, M. R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol. Oceanogr. 49, 51–57 (2004).
Google Scholar
Schmoker, C., Hernández-León, S. & Calbet, A. Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J. Plankton Res. 35, 691–706 (2013).
Google Scholar
Steinke, M., Wolfe, G. V. & Kirst, G. O. Partial characterisation of dimethylsulfoniopropionate (DMSP) lyase isozymes in 6 strains of Emiliania huxleyi. Mar. Ecol. 175, 215–225 (1998).
Google Scholar
Breckels, M. N., Roberts, E. C., Archer, S. D., Malin, G. & Steinke, M. The role of dissolved infochemicals in mediating predator–prey interactions in the heterotrophic dinoflagellate Oxyrrhis marina. J. Plankton Res. 33, 629–639 (2011).
Google Scholar
Saló, V., Simó, R., Vila-Costa, M. & Calbet, A. Sulfur assimilation by Oxyrrhis marina feeding on a 35S-DMSP-labelled prey. Environ. Microbiol. 11, 3063–3072 (2009).
Google Scholar
Raina, J. B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).
Google Scholar
Franklin, D. J. et al. Identification of senescence and death in Emiliania huxleyi and Thalassiosira pseudonana: cell staining, chlorophyll alterations, and dimethylsulfoniopropionate (DMSP) metabolism. Limnol. Oceanogr. 57, 305–317 (2012).
Google Scholar
Kettles, N. L., Kopriva, S. & Malin, G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS ONE 9, e94795 (2014).
Google Scholar
Poulsen, N., Chesley, P. M. & Kröger, N. Molecular genetic manipulation of the diatom Thalassiosira pseudonana (bacillariophyceae). J. Phycol. 42, 1059–1065 (2006).
Google Scholar
Armbrust, E. V. et al. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306, 79–86 (2004).
Google Scholar
Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).
Google Scholar
Apt, K. E. et al. In vivo characterization of diatom multipartite plastid targeting signals. J. Cell Sci. 115, 4061–4069 (2002).
Google Scholar
McParland, E. L., Wright, A., Art, K., He, M. & Levine, N. M. Evidence for contrasting roles of dimethylsulfoniopropionate production in Emiliania huxleyi and Thalassiosira oceanica. New Phytol. 226, 396–409 (2020).
Google Scholar
Keeling, P. J. et al. The Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP): illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 12, e1001889 (2014).
Google Scholar
Olson, M. B. & Strom, S. L. Phytoplankton growth, microzooplankton herbivory and community structure in the southeast Bering Sea: insight into the formation and temporal persistence of an Emiliania huxleyi bloom. Deep-Sea Res. II 49, 5969–5990 (2002).
Google Scholar
Challenger, F. & Simpson, M. I. Studies on biological methylation; a precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata; dimethyl-2-carboxyethylsulphonium hydroxide and its salts. J. Chem. Soc. 3, 1591–1597 (1948).
Google Scholar
Haas, P. The liberation of methyl sulphide by seaweed. Biochem. J. 29, 1297–1299 (1935).
Google Scholar
Stefels, J. & Dijkhuizen, L. Characteristics of DMSP-lyase in Phaeocystis sp. (Prymnesiophyceae). Mar. Ecol. 131, 307–313 (1996).
Google Scholar
Wolfe, G. V., Sherr, E. B. & Sherr, B. F. Release and consumption of DMSP from Emiliania huxleyi during grazing by Oxyrrhis marina. Mar. Ecol. 111, 111–119 (1994).
Google Scholar
Reisch, C. R., Moran, M. A. & Whitman, W. B. Bacterial catabolism of dimethylsulfoniopropionate (DMSP). Front. Microbiol. 2, 172 (2011).
Google Scholar
von Dassow, P. et al. Transcriptome analysis of functional differentiation between haploid and diploid cells of Emiliania huxleyi, a globally significant photosynthetic calcifying cell. Genome Biol. 10, R114 (2009).
Google Scholar
Strom, S., Wolfe, G., Slajer, A., Lambert, S. & Clough, J. Chemical defense in the microplankton II: inhibition of protist feeding by β-dimethylsulfoniopropionate (DMSP). Limnol. Oceanogr. 48, 230–237 (2003).
Google Scholar
Li, W. Eat-me signals: keys to molecular phagocyte biology and “appetite” control. J. Cell. Physiol. 227, 1291–1297 (2012).
Google Scholar
Tyssebotn, I. M. B. et al. Concentrations, biological uptake, and respiration of dissolved acrylate and dimethylsulfoxide in the northern Gulf of Mexico. Limnol. Oceanogr. 62, 1198–1218 (2017).
Google Scholar
Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of dimethylsulphoniopropionate: microorganisms, enzymes and genes. Nat. Rev. Microbiol. 9, 849–859 (2011).
Google Scholar
Spiese, C. E., Le, T., Zimmer, R. L. & Kieber, D. J. Dimethylsulfide membrane permeability, cellular concentrations and implications for physiological functions in marine algae. J. Plankton Res. 38, 41–54 (2015).
Google Scholar
Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A. & Green, D. H. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea. Biogeochemistry 110, 131–146 (2012).
Google Scholar
Laber, C. P. et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat. Microbiol. 3, 537–547 (2018).
Google Scholar
Endres, C. S. & Lohmann, K. J. Perception of dimethyl sulfide (DMS) by loggerhead sea turtles: a possible mechanism for locating high-productivity oceanic regions for foraging. J. Exp. Biol. 215, 3535–3538 (2012).
Google Scholar
Savoca, M. S. Chemoattraction to dimethyl sulfide links the sulfur, iron, and carbon cycles in high-latitude oceans. Biogeochemistry 138, 1–21 (2018).
Google Scholar
Steinke, M., Malin, G. & Liss, P. Trophic interactions in the sea: an ecological role for climate relevant volatiles? J. Phycol. 38, 630–638 (2002).
Google Scholar
Pohnert, G., Steinke, M. & Tollrian, R. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22, 198–204 (2007).
Google Scholar
Lewis, N. et al. Grazing-induced production of DMS can stabilize food-web dynamics and promote the formation of phytoplankton blooms in a multitrophic plankton model. Biogeochemistry 110, 303–313 (2012).
Google Scholar
Lewis, N. D., Breckels, M. N., Steinke, M. & Codling, E. A. Role of infochemical mediated zooplankton grazing in a phytoplankton competition model. Ecol. Complex. 16, 41–50 (2013).
Google Scholar
Hansen, F. C., Reckermann, M., Breteler, W. C. M. K. & Riegman, R. Phaeocystis blooming enhanced by copepod predation on protozoa: evidence from incubation experiments. Mar. Ecol. Prog. Ser. 102, 51–57 (1993).
Google Scholar
Levasseur, M. et al. Production of DMSP and DMS during a mesocosm study of an Emiliania huxleyi bloom: influence of bacteria and Calanus finmarchicus grazing. Mar. Biol. 126, 609–618 (1996).
Google Scholar
Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239 (1962).
Google Scholar
Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).
Google Scholar
Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. https://doi.org/10.3354/ame01753 (2015).
Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).
Google Scholar
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).
Google Scholar
McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).
Google Scholar
Frost, B. W. Effects of size and concentration of food particles on the feeding and behavior of the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 17, 805–815 (1972).
Google Scholar
Johnson, M. D., Michelle, R. & Stoecker, D. K. Microzooplankton grazing on Prorocentrum minimum and Karlodinium micrum in Chesapeake Bay. Limnol. Oceanogr. 48, 238–248 (2003).
Google Scholar
Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).
Google Scholar
Piredda, R. et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean Long Term Ecological Research site. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw200 (2017).
Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
Google Scholar
Slamovits, C. H., Saldarriaga, J. F., Larocque, A. & Keeling, P. J. The highly reduced and fragmented mitochondrial genome of the early-branching dinoflagellate Oxyrrhis marina shares characteristics with both apicomplexan and dinoflagellate mitochondrial genomes. J. Mol. Biol. 372, 356–368 (2007).
Google Scholar
Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, W71–W74 (2007).
Google Scholar
Dagg, M. J., Jackson, G. A. & Checkley, D. M. The distribution and vertical flux of fecal pellets from large zooplankton in Monterey Bay and coastal California. Deep-Sea Res. I 94, 72–86 (2014).
Google Scholar
Source: Ecology - nature.com