in

Disentangling the role of environment in cross-taxon congruence of species richness along elevational gradients

  • 1.

    Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 8–22 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 2.

    Classen, A. et al. Temperature versus resource constraints: Which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Glob. Ecol. Biogeogr. 24, 642–652 (2015).

    Article  Google Scholar 

  • 3.

    Rahbek, C. et al. Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 4.

    Toranza, C. & Arim, M. Cross-taxon congruence and environmental conditions. BMC Ecol. 10, 18 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  • 5.

    Gioria, M., Bacaro, G. & Feehan, J. Evaluating and interpreting cross-taxon congruence: Potential pitfalls and solutions. Acta Oecol. 37, 187–194 (2011).

    ADS  Article  Google Scholar 

  • 6.

    Graham, C. H. et al. The origin and maintenance of montane diversity: Integrating evolutionary and ecological processes. Ecography (Cop.) 37, 711–719 (2014).

    Article  Google Scholar 

  • 7.

    Westgate, M. J., Tulloch, A. I. T., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: A meta-analytic approach. Ecography (Cop.) 40, 539–548 (2017).

    Article  Google Scholar 

  • 8.

    Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 8, 1–2 (2001).

    Google Scholar 

  • 9.

    McCain, C. M. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 18, 346–360 (2009).

    Article  Google Scholar 

  • 10.

    Peters, M. K. et al. Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat. Commun. 7, 13736 (2016).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • 11.

    Sundqvist, M. K., Sanders, N. J. & Wardle, D. A. Community and ecosystem responses to elevational gradients: Processes, mechanisms, and insights for global change. Annu. Rev. Ecol. Evol. Syst. 44, 261–280 (2013).

    Article  Google Scholar 

  • 12.

    Ruggiero, A. & Hawkins, B. A. Why do mountains support so many species of birds? Ecography (Cop.) 31, 306–315 (2008).

    Article  Google Scholar 

  • 13.

    Mccain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).

    Article  Google Scholar 

  • 15.

    Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).

    Article  Google Scholar 

  • 16.

    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).

    Article  Google Scholar 

  • 18.

    Vetaas, O. R., Paudel, K. P. & Christensen, M. Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. https://doi.org/10.1111/jbi.13564 (2019).

    Article  Google Scholar 

  • 19.

    Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).

    PubMed  Article  PubMed Central  Google Scholar 

  • 20.

    Kaspari, M., Alonso, L. & O’Donnell, S. Three energy variables predict ant abundance at a geographical scale. Proc. R. Soc. B Biol. Sci. 267, 485–489 (2000).

    CAS  Article  Google Scholar 

  • 21.

    Pianka, E. R. Latitudinal gradients in species diversity: A review of concepts. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  • 22.

    Werenkraut, V. & Ruggiero, A. The richness and abundance of epigaeic mountain beetles in north-western Patagonia, Argentina: Assessment of patterns and environmental correlates. J. Biogeogr. 41, 561–573 (2014).

    Article  Google Scholar 

  • 23.

    R Core Team. R version 3.6.2 ‘Dark and Stormy Night’ (2019). (Accessed 12 December 2019). https://www.r-project.org. 

  • 24.

    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).

    PubMed  Article  Google Scholar 

  • 25.

    Hodkinson, I. D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. 80, 489–513 (2005).

    PubMed  Article  Google Scholar 

  • 26.

    Kampmann, D. et al. Mountain grassland biodiversity: Impact of site conditions versus management type. J. Nat. Conserv. 16, 12–25 (2008).

    Article  Google Scholar 

  • 27.

    Janzen, D. H. et al. Changes in the arthropod community along an elevational transect in the Venezuelan Andes. Biotropica 8, 193–203 (1976).

    Article  Google Scholar 

  • 28.

    Sirin, D., Eren, O. & Ciplak, B. Grasshopper diversity and abundance in relation to elevation and vegetation from a snapshot in Mediterranean Anatolia: Role of latitudinal position in altitudinal differences. J. Nat. Hist. 44, 1343–1363 (2010).

    Article  Google Scholar 

  • 29.

    Alexander, G. & Hilliard, J. R. Altitudinal and seasonal distribution of Orthoptera in the Rocky Mountains of northern Colorado. Ecol. Monogr. 39, 385–432 (1969).

    Article  Google Scholar 

  • 30.

    Mojica, A. S. & Fagua, G. Estructura de las comunidades de orthoptera (insecta) en un gradiente altitudinal de un bosque andino. Rev. Colomb. Entomol. 32, 200–213 (2006).

    Google Scholar 

  • 31.

    Grytnes, J. A. Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography (Cop.) 26, 291–300 (2003).

    Article  Google Scholar 

  • 32.

    McCain, C. M. & Grytnes, J.-A. Elevational gradients in species richness. Encyl. Life Sci. https://doi.org/10.1002/9780470015902.a0022548 (2010).

    Article  Google Scholar 

  • 33.

    Xu, X. et al. Altitudinal patterns of plant species richness in the Honghe region of China. Pak. J. Bot. 49, 1039–1048 (2017).

    Google Scholar 

  • 34.

    Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Röder, J. et al. Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient. Biotropica 49, 217–228 (2017).

    Article  Google Scholar 

  • 36.

    Evans, K. L., Warren, P. H. & Gaston, K. J. Species-energy relationships at the macroecological scale: A review of the mechanisms. Biol. Rev. Camb. Philos. Soc. 80, 1–25 (2005).

    PubMed  Article  Google Scholar 

  • 37.

    Kissling, W. D., Rahbek, C. & Böhning-Gaese, K. Food plant diversity as broad-scale determinant of avian frugivore richness. Proc. R. Soc. Biol. Sci. 274, 799–808 (2007).

    Article  Google Scholar 

  • 38.

    Kissling, W. D., Field, R. & Böhning-Gaese, K. Spatial patterns of woody plant and bird diversity: Functional relationships or environmental effects? Glob. Ecol. Biogeogr. 17, 327–339 (2008).

    Article  Google Scholar 

  • 39.

    Chown, S. L. & Gaston, K. J. Exploring links between physiology and ecology at macro scales: The role of respiratory metabolism in insects. Biol. Rev. 74, 87–120 (1999).

    Article  Google Scholar 

  • 40.

    de Araújo, W. S. Different relationships between galling and non-galling herbivore richness and plant species richness: A meta-analysis. Arthropod. Plant. Interact. 7, 373–377 (2013).

    Article  Google Scholar 

  • 41.

    Qian, H. & Kissling, W. D. Spatial scale and cross-taxon congruence of terrestrial vertebrate and vascular plant species richness in China. Ecology 91, 1172–1183 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • 42.

    Burrascano, S. et al. Congruence across taxa and spatial scales: Are we asking too much of species data? Glob. Ecol. Biogeogr. 27, 980–990 (2018).

    Article  Google Scholar 

  • 43.

    Field, R. et al. Spatial species-richness gradients across scales: A meta-analysis. J. Biogeogr. 36, 132–147 (2009).

    Article  Google Scholar 

  • 44.

    Giorgis, M. A. et al. Composición florística del Bosque Chaqueño Serrano de la provincia de Córdoba, Argentina. Kurtziana 36, 9–43 (2011).

    Google Scholar 

  • 45.

    Cabido, M., Funes, G., Pucheta, E., Vendramani, F. & Díaz, S. A chorological analysis of the mountains from Central Argentina. Is all what we call Sierra Chaco really Chaco? Contribution to the study of the flora and vegetation of the Chaco: 12. Candollea 53, 321–331 (1998).

    Google Scholar 

  • 46.

    Giorgis, M. A. et al. Changes in floristic composition and physiognomy are decoupled along elevation gradients in central Argentina. Appl. Veg. Sci. 20, 553–571 (2017).

    Article  Google Scholar 

  • 47.

    Cabrera, A. L. Fitogeografia de la República Argentina. In Enciclopedia Argentina de Agricultura y Jardinería Vol. 14 (ed. Kugler, W. F.) 1–42 (ACME, New York, 1976).

    Google Scholar 

  • 48.

    Giorgis, M. A. et al. Diferencias en la estructura de la vegetación del sotobosque entre una plantación de Pinus taedaL. (Pinaceae) y un matorral serrano (Cuesta Blanca, Córdoba). Kurtziana 31, 39–49 (2005).

    Google Scholar 

  • 49.

    Martínez, G. A., Arana, M. D., Oggero, A. J. & Natale, E. S. Biogeographical relationships and new regionalisation of high-altitude grasslands and woodlands of the central Pampean Ranges (Argentina), based on vascular plants and vertebrates. Aust. Syst. Bot. 29, 473–488 (2016).

    Article  Google Scholar 

  • 50.

    QGIS Development Team. QGIS Geographic Information System (Accessed 19 April 2019). (2019).

  • 51.

    Kent, M. The description of vegetation in the field. In Vegetation Description and Data Analysis: A Practical Approach (ed. Kent, M.) 65–116 (Wiley-Blackwell, Hoboken, 2012).

    Google Scholar 

  • 52.

    Catálogo de las plantas vasculares del Cono Sur : (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). (Missouri Botanical Garden Press, 2008).

  • 53.

    Haddad, N., Tilman, D., Haarstad, J., Ritchie, M. & Knops, J. M. N. Contrasting effects of plant richness and composition on insect communities: a field experiment. Am. Nat. 158, 17–35 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 54.

    Braun, H. & Zubarán, G. Tettigoniidae (Orthoptera) Species from Argentina and Uruguay (2019).

  • 55.

    Carbonell, C. S., Cigliano, M. M. & Lange, C. E. Acridomorph (Orthoptera) Species of Argentina and Uruguay. Version II [2019]. https://biodar.unlp.edu.ar/acridomorph/.

  • 56.

    Cigliano, M. M., Braun, H., Eades, D. C. & Otte, D. Orthoptera Species File. Version 5.0/5.0 (2018). http://orthoptera.speciesfile.org.

  • 57.

    Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

    Article  Google Scholar 

  • 58.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).

    Article  Google Scholar 

  • 59.

    Carrara, R., Silvestro, V. A., Cheli, G. H., Campón, F. F. & Flores, G. E. Disentangling the effect of climate and human influence on distribution patterns of the darkling beetle Scotobius pilularius Germar, 1823 (Coleoptera: Tenebrionidae). Ann. Zool. 66, 693–701 (2016).

    Article  Google Scholar 

  • 60.

    Aisen, S., Werenkraut, V., Márquez, M. E. G., Ramírez, M. J. & Ruggiero, A. Environmental heterogeneity, not distance, structures montane epigaeic spider assemblages in north-western Patagonia (Argentina). J. Insect Conserv. 21, 1–12 (2017).

    Article  Google Scholar 

  • 61.

    Bilskie, J. Soil Water Status: Content and Potential (Campbell Scientific Inc., Logan, 2001).

    Google Scholar 

  • 62.

    Tucker, C. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979).

    ADS  Article  Google Scholar 

  • 63.

    Wang, J., Rich, P. M., Price, K. P. & Dean-Kettle, W. Relations between NDVI, grassland production, and crop yield in the central great plains. Geocarto Int. 20, 5–11 (2005).

    Article  Google Scholar 

  • 64.

    Oindo, B. O., de By, R. A. & Skidmore, A. K. Interannual variability of NDVI and bird species diversity in Kenya. Int. J. Appl. Earth Obs. Geoinf. 2, 172–180 (2000).

    ADS  Article  Google Scholar 

  • 65.

    IGN. Modelo Digital de Elevaciones de la República Argentina. (Instituto Geográfico Nacional—Dirección General de Servicios Geográficos—Dirección de Geodesia, 2016).

  • 66.

    Riley, S. J., DeGloria, S. D. & Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 5, 23–27 (1999).

    Google Scholar 

  • 67.

    Stein, A. & Kreft, H. Terminology and quantification of environmental heterogeneity in species-richness research. Biol. Rev. 90, 815–836 (2015).

    PubMed  Article  Google Scholar 

  • 68.

    Tilman, D. & Pacala, S. W. The maintenance of species richness in plant communities. In Species Diversity in Ecological Communities (eds Ricklefs, R. E. & Schulter, D.) 13–25 (University of Chicago Press, Chicago, 1993).

    Google Scholar 

  • 69.

    Cleveland, W. S., Grosse, E. & Shyu, W. M. Local regresion models. In Statistical Models in S (eds Chambers, J. M. & Hastie, T. J.) 227 (Chapman and Hall, London, 1993).

    Google Scholar 

  • 70.

    Szewczyk, T. & Mccain, C. M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 11, e0155404 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • 71.

    Beck, J. et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 26, 412–424 (2017).

    Article  Google Scholar 

  • 72.

    Bolker, B. M. Ecological Statistics: Contemporary Theory and Application (Oxford University Press Inc., Oxford, 2015).

    Google Scholar 

  • 73.

    Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, Cambridge, 2006).

    Google Scholar 

  • 74.

    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).

    Article  Google Scholar 

  • 75.

    Jiménez-Alfaro, B., Chytrý, M., Mucina, L., Grace, J. B. & Rejmánek, M. Disentangling vegetation diversity from climate-energy and habitat heterogeneity for explaining animal geographic patterns. Ecol. Evol. 6, 1515–1526 (2016).

    PubMed  PubMed Central  Article  Google Scholar 


  • Source: Ecology - nature.com

    An aggressive market-driven model for US fusion power development

    King Climate Action Initiative announces new research to test and scale climate solutions