in

Dissimilatory nitrate reduction by a freshwater cable bacterium

  • 1.

    Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature. 2010;463:1071–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. Isme J. 2014;8:1843–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche EM, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.

    CAS 
    Article 

    Google Scholar 

  • 6.

    Marzocchi U, Bonaglia S, van de Velde S, Hall POJ, Schramm A, Risgaard-Petersen N, et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environ Microbiol. 2018;20:3031–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta. 2012;92:1–13.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY, Burdorf LD, et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA. 2015;112:13278–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 10.

    Sulu-Gambari F, Seitaj D, Meysman FJR, Schauer R, Polerecky L, Slomp CP. Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol. 2016;50:1227–33.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Marzocchi U, Trojan D, Larsen S, Meyer RL, Revsbech NP, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kessler AJ, Wawryk M, Marzocchi U, Roberts KL, Wong WW, Risgaard‐Petersen N, et al. Cable bacteria promote DNRA through iron sulfide dissolution. Limnol Oceanogr. 2018;64:1228–38.

    Article 
    CAS 

    Google Scholar 

  • 14.

    Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 15.

    MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, et al. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol. 2013;79:1183–90.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Buckley A, MacGregor B, Teske A. Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae, Guaymas Basin. Front Microbiol. 2019;10:644.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Damgaard LR, Risgaard‐Petersen N, Nielsen LP. Electric potential microelectrode for studies of electrobiogeophysics. J Geophys Res Biogeosci. 2014;119:1906–17.

    CAS 
    Article 

    Google Scholar 

  • 19.

    Archie GE. The electrical resistivity log as an aid in determining some reservoir characteristics. T Am I Min Met Eng. 1942;146:54–61.

    Google Scholar 

  • 20.

    Nielsen LP. Denitrification in sediment determined from nitrogen isotope pairing. Fems Microbiol Ecol. 1992;86:357–62.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Risgaard-Petersen N, Rysgaard S. Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. Academic Press; 1995. p. 287–95.

  • 22.

    Risgaard-Petersen N, Rysgaard S, Revsbech NP. Combined microdiffusion-hypobromite oxidation method for determining N-15 isotope in ammonium. Soil Sci Soc Am J. 1995;59:1077–80.

    CAS 
    Article 

    Google Scholar 

  • 23.

    Bower CE, Holmhansen T. A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci. 1980;37:794–8.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 25.

    Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. 2019; 8:giz100.

  • 26.

    Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Micro. 2014;80:2110–9.

    Article 
    CAS 

    Google Scholar 

  • 29.

    Jepson BJN, Marietou A, Mohan S, Cole JA, Butler CS, Richardson DJ. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc T. 2006;34:122–6.

    CAS 
    Article 

    Google Scholar 

  • 30.

    Haase D, Hermann B, Einsle O, Simon J. Epsilonproteobacterial hydroxylamine oxidoreductase (epsilon Hao): characterization of a ‘missing link’ in the multihaem cytochrome c family. Mol Microbiol. 2017;105:127–38.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Klotz MG, Schmid MC, Strous M, op den Camp HJ, Jetten MS, Hooper AB. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol. 2008;10:3150–63.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Betlach MR, Tiedje JM. Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Micro. 1981;42:1074–84.

    CAS 
    Article 

    Google Scholar 

  • 33.

    Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BBA Bioenerg. 2013;1827:114–35.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Hermans M, Lenstra WK, Hidalgo-Martinez S, van Helmond N, Witbaard R, Meysman FJR, et al. Abundance and biogeochemical impact of cable bacteria in Baltic sea sediments. Environ Sci Technol. 2019;53:7494–503.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Marshall IPG, Starnawski P, Cupit C, Fernandez Caceres E, Ettema TJG, Schramm A, et al. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ Microbiol Rep. 2017;9:397–403.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 36.

    Lefevre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Trojan D, Schreiber L, Bjerg JT, Boggild A, Yang T, Kjeldsen KU, et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol. 2016;39:297–306.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Dam AS, Marshall IPG, Risgaard-Petersen N, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Jones CM, Stres B, Rosenquist M, Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 2008;25:1955–66.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE. 2014;9:e114118.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol. 2011;155:104–17.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Simon J, Sänger M, Schuster SC, Gross R. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol. 2003;49:69–79.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Venceslau SS, Lino RR, Pereira IAC. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim Cosmochim Ac. 2015;152:122–42.

    CAS 
    Article 

    Google Scholar 

  • 47.

    Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim Biophys Acta. 2009;1787:646–56.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Chen Y, Wang F. Insights on nitrate respiration by Shewanella. Front Mar Sci. 2015; 1:80.

  • 49.

    Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, et al. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 2009;3:966–76.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM, Hidalgo-Martinez S, et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA. 2020;117:5478–85.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP. Oxygen consumption of individual cable bacteria. Sci Adv. 2021; 7:eabe1870.

  • 52.

    Bjerg JT, Damgaard LR, Holm SA, Schramm A, Nielsen LP. Motility of electric cable bacteria. Appl Environ Microbiol. 2016;82:3816–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 53.

    Dam A-S, Marshall IPG, Petersen NR, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.

  • 54.

    Westram R, Bader K, Pruesse E, Kumar Y, Meier H, Glöckner FO, et al. ARB: a software environment for sequence data. In: de Bruijn FJ, editor. Handbook of molecular microbial ecology I: metagenomics and complementary approaches. John Wiley & Sons, Inc.; Hoboken, New Jersey; 2011. p. 399–406.


  • Source: Ecology - nature.com

    Sexual competition and kin recognition co-shape the traits of neighboring dioecious Diospyros morrisiana seedlings

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions