Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, et al. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science (80-). 2001;294:804–8.
Google Scholar
Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature. 2012;486:59–67.
Google Scholar
Jochum M, Fischer M, Isbell F, Roscher C, van der Plas F, Boch S, et al. The results of biodiversity-ecosystem functioning experiments are realistic. Nat Ecol Evol. 2020;4:1485–94.
Google Scholar
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett. 2006;9:1146–56.
Google Scholar
Cardinale BJ, Matulich KL, Hooper DU, Byrnes JE, Duffy E, Gamfeldt L, et al. The functional role of producer diversity in ecosystems. Am J Bot. 2011;98:572–92.
Google Scholar
Weißbecker C, Heintz-Buschart A, Bruelheide H, Buscot F, Wubet T. Linking soil fungal generality to tree richness in young subtropical Chinese forests. Microorganisms. 2019; https://doi.org/10.3390/microorganisms7110547.
Prada-Salcedo LD, Wambsganss J, Bauhus J, Buscot F, Goldmann K. Low root functional dispersion enhances functionality of plant growth by influencing bacterial activities in European forest soils. Env Microbiol. 2020; https://doi.org/10.1111/1462-2920.15244.
Prada-Salcedo LD, Goldmann K, Heintz-Buschart A, Reitz T, Wambsganss J, Bauhus J, et al. Fungal guilds and soil functionality respond to tree community traits rather than to tree diversity in European forests. Mol Ecol. 2021;30:572–91.
Google Scholar
Baldrian P. The known and the unknown in soil microbial ecology. FEMS Microbiol Ecol. 2019; https://doi.org/10.1093/femsec/fiz005.
van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30:418–26.
Google Scholar
Smith SE, Read DJ. Mycorrhizal symbiosis. 2010. Academic press.
Chen W, Koide RT, Eissenstat DM, Field K. Nutrient foraging by mycorrhizas: from species functional traits to ecosystem processes. Funct Ecol. 2018;32:858–69.
Google Scholar
Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q, et al. Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. Int J Mol Sci. 2019; https://doi.org/10.3390/ijms20174199.
Pena R, Polle A. Attributing functions to ectomycorrhizal fungal identities in assemblages for nitrogen acquisition under stress. ISME J. 2014;8:321–30.
Google Scholar
He X-H, Critchley C, Bledsoe C. Nitrogen transfer within and between plants through common mycorrhizal networks (CMNs). CRC Crit Rev Plant Sci. 2003;22:531–67.
Google Scholar
Aerts R. The role of various types of mycorrhizal fungi in nutrient cycling and plant competition. In: Mycorrhizal Ecol. Springer; 2003. p. 117–33.
Phillips RP, Brzostek E, Midgley MG. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol. 2013;199:41–51.
Google Scholar
Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9.
Google Scholar
Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. New Phytol. 2000;148:511–7.
Google Scholar
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat Rev Microbiol. 2016;14:760–73.
Google Scholar
Teste FP, Jones MD, Dickie IA. Dual-mycorrhizal plants: their ecology and relevance. New Phytol. 2020;225:1835–51.
Google Scholar
Heklau H, Schindler N, Buscot F, Eisenhauer N, Ferlian O, Prada Salcedo LD, et al. Mixing tree species associated with arbuscular or ectotrophic mycorrhizae reveals dual mycorrhization and interactive effects on the fungal partners. Ecol Evol. 2021.
Regvar M, Likar M, Piltaver A, Kugonič N, Smith JE. Fungal community structure under goat willows (Salix caprea L.) growing at metal polluted site: the potential of screening in a model phytostabilisation study. Plant Soil. 2010;330:345–56.
Google Scholar
Waldrop MP, Zak DR, Blackwood CB, Curtis CD, Tilman D. Resource availability controls fungal diversity across a plant diversity gradient. Ecol Lett. 2006;9:1127–35.
Google Scholar
Hooper DU, Bignell DE, Brown VK, Brussard L, Mark Dangerfield J, Wall DH, et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: we assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms co. Bioscience. 2000;50:1049–61.
Google Scholar
Montesinos‐Navarro A, Segarra‐Moragues JG, Valiente‐Banuet A, Verdú M. The network structure of plant–arbuscular mycorrhizal fungi. New Phytol. 2012;194:536–47.
Google Scholar
Bahram M, Harend H, Tedersoo L. Network perspectives of ectomycorrhizal associations. Fungal Ecol. 2014;7:70–7.
Google Scholar
Querejeta J, Egerton-Warburton LM, Allen MF. Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology. 2009;90:649–62.
Google Scholar
Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, et al. The fungal collaboration gradient dominates the root economics space in plants. Sci Adv. 2020;6:eaba3756.
Google Scholar
Weißbecker C, Wubet T, Lentendu G, Kühn P, Scholten T, Bruelheide H, et al. Experimental evidence of functional group-dependent effects of tree diversity on soil fungi in subtropical forests. Front Microbiol. 2018;9:2312.
Google Scholar
Ferlian O, Cesarz S, Craven D, Hines J, Barry KE, Bruelheide H, et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere. 2018;9:e02226.
Google Scholar
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–63.
Google Scholar
Kolaříková Z, Kohout P, Krüger C, Janoušková M, Mrnka L, Rydlová J. Root-associated fungal communities along a primary succession on a mine spoil: distinct ecological guilds assemble differently. Soil Biol Biochem. 2017;113:143–52.
Google Scholar
Dang P, Vu NH, Shen Z, Liu J, Zhao F, Zhu H, et al. Changes in soil fungal communities and vegetation following afforestation with Pinus tabulaeformis on the Loess Plateau. Ecosphere. 2018;9:e02401.
Google Scholar
Kalucka IL, Jagodzinski AM. Successional traits of ectomycorrhizal fungi in forest reclamation after surface mining and agricultural disturbances: A review. Dendrobiology. 2016;76:91–104.
Google Scholar
Jones MD, Durall DM, Cairney JWG. Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol. 2003;157:399–422.
Google Scholar
Rog I, Rosenstock NP, Korner C, Klein T. Share the wealth: trees with greater ectomycorrhizal species overlap share more carbon. Mol Ecol. 2020;29:2321–33.
Google Scholar
Chagnon PL, Bradley RL, Maherali H, Klironomos JN. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013;18:484–91.
Google Scholar
Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM. Where the wild things are: looking for uncultured Glomeromycota. New Phytol. 2014;204:171–9.
Google Scholar
Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M. Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol. 2009;184:424–37.
Google Scholar
Buscot F. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol. 2015;172:55–61.
Google Scholar
Hiiesalu I, Pärtel M, Davison J, Gerhold P, Metsis M, Moora M, et al. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass. New Phytol. 2014;203:233–44.
Google Scholar
Nguyen NH, Williams LJ, Vincent JB, Stefanski A, Cavender-Bares J, Messier C, et al. Ectomycorrhizal fungal diversity and saprotrophic fungal diversity are linked to different tree community attributes in a field‐based tree experiment. Mol Ecol. 2016;25:4032–46.
Google Scholar
Burrows RL, Pfleger FL. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot. 2002;80:120–30.
Google Scholar
Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci Rep. 2017;7:44641.
Google Scholar
Lange M, Eisenhauer N, Sierra CA, Bessler H, Engels C, Griffiths RI, et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat Commun. 2015;6:1–8.
Klironomos JN, McCune J, Hart M, Neville J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett. 2000;3:137–41.
Google Scholar
Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M. Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany. 2013;92:277–85.
Google Scholar
Molina R, Horton TR. Mycorrhiza specificity: its role in the development and function of common mycelial networks BT – Mycorrhizal Networks. In: Horton TR, editor. Springer Netherlands, Dordrecht; 2015. p. 1–39.
van der Linde S, Suz LM, Orme C, Cox F, Andreae H, Asi E, et al. Environment and host as large-scale controls of ectomycorrhizal fungi. Nature. 2018;558:243–8.
Google Scholar
Rasmussen AL, Busby RR, Hoeksema JD. Host preference of ectomycorrhizal fungi in mixed pine–oak woodlands. Can J For Res. 2017;48:153–9.
Google Scholar
Soudzilovskaia NA, Vaessen S, van’t Zelfde M, Raes N. Global patterns of mycorrhizal distribution and their environmental drivers. In: Biogeogr. mycorrhizal symbiosis. Springer; 2017. p. 223–35.
Simard SW, Jones MD, Durall DM. Carbon and nutrient fluxes within and between mycorrhizal plants BT – Mycorrhizal Ecology. In: van der Heijden MGA, Sanders IR, editors. Springer Berlin Heidelberg, Berlin, Heidelberg; 2003. p. 33–74.
Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E. Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil. 1995;170:47–62.
Google Scholar
Dickie IA, Koide RT, Fayish AC. Vesicular–arbuscular mycorrhizal infection of Quercus rubra seedlings. New Phytol. 2001;151:257–64.
Google Scholar
Davison J, Öpik M, Daniell TJ, Moora M, Zobel M. Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbiol Ecol. 2011;78:103–15.
Google Scholar
Singavarapu B, Beugnon R, Bruelheide H, Cesarz S, Du J, Eisenhauer N, et al. Tree mycorrhizal type and tree diversity shape the forest soil microbiota. Environ Microbiol. 2021.
Altermann M, Rinklebe J, Merbach I, Körschens M, Langer U, Hofmann B. Chernozem—soil of the year 2005. J Plant Nutr Soil Sci. 2005;168:725–40.
Google Scholar
Wang B, Qiu Y-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza. 2006;16:299–363.
Google Scholar
Vierheilig H, Schweiger P, Brundrett M. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant. 2005;125:393–404.
Google Scholar
Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980; 489–500.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protoc. a Guid. to methods Appl. San Diego; 1990. p. 315–22.
Wahdan SFM, Reitz T, Heintz-Buschart A, Schädler M, Roscher C, Breitkreuz C, et al. Organic agricultural practice enhances arbuscular mycorrhizal symbiosis in correspondence to soil warming and altered precipitation patterns. Environ Microbiol. 2021. https://doi.org/10.1111/1462-2920.15492.
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.
Google Scholar
Weißbecker C, Schnabel B, Heintz-Buschart A. Dadasnake, a Snakemake implementation of DADA2 to process amplicon sequencing data for microbial ecology. Gigascience. 2020. https://doi.org/10.1093/gigascience/giaa135.
Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, et al. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010;188:223–41.
Google Scholar
Katoh K, Asimenos G, Toh H. Multiple alignment of DNA sequences with MAFFT. In: Bioinforma. DNA Seq. Anal. Springer; 2009. p. 39–64.
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.
Google Scholar
Nilsson RH, Larsson KH, Taylor A, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2018. https://doi.org/10.1093/nar/gky1022.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
Google Scholar
Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33:2938–40.
Google Scholar
Chytrý M, Tichý L, Holt J, Botta‐Dukát Z. Determination of diagnostic species with statistical fidelity measures. J Veg Sci. 2002;13:79–90.
Google Scholar
Source: Ecology - nature.com