Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. U. S. A. 115(10), 2335–2340 (2018).
Google Scholar
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3(1), 1293 (2012).
Google Scholar
Palomo, I., Felipe-Lucia, M. R., Bennett, E. M., Martín-López, B. & Pascual, U. Chapter six—disentangling the pathways and effects of ecosystem service co-production. In Advance Ecology Research (eds Woodward, G. & Bohan, D. A.) 245–283 (Academic Press, 2016).
Lavorel, S., Locatelli, B., Colloff, M. J. & Bruley, E. Co-producing ecosystem services for adapting to climate change. Philos. T. Roy. Soc. B. 375(1794), 20190119 (2020).
Google Scholar
Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54(2), 358–370 (2017).
Google Scholar
Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).
Google Scholar
Jones, L. et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 52, 151–162 (2016).
Google Scholar
Barot, S., Yé, L., Abbadie, L., Blouin, M. & Frascaria-Lacoste, N. Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol. Eng. 99, 486–495 (2017).
Google Scholar
Remme, R. P., Edens, B., Schröter, M. & Hein, L. Monetary accounting of ecosystem services: a test case for Limburg province, the Netherlands. Ecol. Econ. 112, 116–128 (2015).
Google Scholar
Gaiser, T. & Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere (eds Lal, R. et al.) 407–418 (Springer, 2013).
FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015).
Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).
Google Scholar
Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4), 230–238 (2013).
Google Scholar
Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(9), e107522 (2014).
Google Scholar
Pelletier, N. et al. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 36(1), 223–246 (2011).
Google Scholar
Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).
Google Scholar
Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20(1), 31–37 (2017).
Google Scholar
Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. Energy and the food system. Philos. T. Roy. Soc. B. 365(1554), 2991–3006 (2010).
Google Scholar
Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).
Google Scholar
Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19(4), 50 (2014).
Google Scholar
Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018).
Google Scholar
Fitter, A. H. Are ecosystem services replaceable by technology?. Environ. Res. Econ. 55(4), 513–524 (2013).
Google Scholar
Cohen, F., Hepburn, C. J. & Teytelboym, A. Is natural capital really substitutable?. Annu. Rev. Environ. Resour. 44(1), 425–448 (2019).
Google Scholar
Ekins, P., Simon, S., Deutsch, L., Folke, C. & De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 44(2–3), 165–185 (2003).
Google Scholar
Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9(10), 105011 (2014).
Google Scholar
Levers, C., Butsic, V., Verburg, P. H., Müller, D. & Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 58, 380–393 (2016).
Google Scholar
Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2(1), 22–28 (2019).
Google Scholar
Fuglie, K. R&D capital, RD spillovers, and productivity growth in world agriculture. Appl. Econ. Perspect. Policy 40(3), 421–444 (2018).
Google Scholar
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).
Google Scholar
German, R. N., Thompson, C. E. & Benton, T. G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92(2), 716–738 (2017).
Google Scholar
Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).
Google Scholar
Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011).
Google Scholar
Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5(5), 464–470 (2013).
Google Scholar
Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12(6), 356–361 (2014).
Google Scholar
Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).
Google Scholar
Stirzaker, R., Biggs, H., Roux, D. & Cilliers, P. Requisite simplicities to help negotiate complex problems. Ambio 39(8), 600–607 (2010).
Google Scholar
Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484–493 (2013).
Google Scholar
Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909–5914 (2011).
Google Scholar
Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40(S1), 45–55 (2015).
Google Scholar
Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.012 (2020).
Google Scholar
Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360(6392), 987–992 (2018).
Google Scholar
Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25(6), 1941–1956 (2019).
Google Scholar
Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32(1), 68–80 (2017).
Google Scholar
Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22(1), 1–19 (2008).
Google Scholar
IFA, IFDC, IPI, PPI, FAO. Fertilizer Use by Crop (FAO, 2002).
IFA. Assessment of Fertilizer Use by Crop at the Global Level 2006/07–2007/08 (IFA, 2009).
IFA. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/11 (IFA, 2013).
IFA and IPNI. Assessment of Fertilizer Use by Crop at the Global Level (IFA and IPNI, 2017).
FAO. Crops. http://www.fao.org/faostat/en/#data/QC (2018).
FAO. Capital Stock. http://www.fao.org/faostat/en/#data/CS (2018).
U.S. Bureau of Labor Statistics. CPI Inflation Calculator. https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=1.00&year1=200001&year2=201401 (2020).
FAO. Livestock Manure. http://www.fao.org/faostat/en/#data/EMN (2018).
FAO. Food Balance Sheets: A Handbook 95 (FAO, 2001).
World Bank. The World by Income and Region. https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (2019).
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
RStudio Team. RStudio: Integrated Development for R (RStudio, Inc., 2018).
Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).
Google Scholar
Natural Earth. Admin 0—Countries. Version 4.0.0 (accessed 22 October 2017); https://www.naturalearthdata.com/ (2017).
Source: Ecology - nature.com