Sharrow, S. H. & Ismail, S. Carbon and nitrogen storage in agroforests, tree plantations, and pastures in western Oregon, USA. Agrofor. Syst. 60(2), 123–130 (2004).
Google Scholar
Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, Northwestern China. Acta. Ecol. Sin. 35(15), 5215–5227 (2015).
Watson, R. T. et al. Land use, land-use change, and forestry. In: Published for the Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 308 (2000).
Zhao, M. M. et al. Estimation of China’s forest stand biomass carbon sequestration based on the continuous biomass expansion factor model and seven forest inventories from 1977 to 2013. For. Ecol. Manag. 448, 528–534 (2019).
Google Scholar
Dale, V. H. et al. Climate change and forest disturbances. Bioscience 51, 723–734 (2001).
Google Scholar
Gunderson, P. Carbon—Nitrogen Interactions in Forest Ecosystems—Final Report. Danish Centre for Forest, Landscape and Planning, Denmark (2006).
Hook, P. B. & Burke, I. C. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81, 2686–2703 (2000).
Google Scholar
Vourlitis, G. L., Zorba, G., Pasquini, S. C. & Mustard, R. Carbon and nitrogen storage in soil and litter of southern Californian semi-arid shrublands. J. Arid Environ. 70, 164–173 (2007).
Google Scholar
Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).
Google Scholar
Liu, G. H., Fu, B. & Fang, J. Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance. Acta. Ecol. Sin. 20(5), 733–740 (2000).
IPCC. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007).
Phillips, J. et al. Live aboveground carbon stocks in natural forests of Colombia. For. Ecol. Manag. 374, 119–128 (2016).
Google Scholar
Gibbs, H. K., Brown, B., Niles, J. O. & Foley, J. A. Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ. Res. Lett. 2(4), 1–13 (2007).
Aragão, L. et al. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences 6, 2759–2778 (2009).
Google Scholar
Malhi, Y. et al. Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Glob. Chang. Biol. 15, 1255–1274 (2009).
Google Scholar
Post, W. M. & Kwon, K. C. Soil carbon sequestration and land use change: processes and potential. Glob. Chang. Biol. 6, 317–327 (2000).
Google Scholar
Ma, J. et al. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecol. Eng. 81, 353–362 (2015).
Google Scholar
Davidson, E. A., Trumbore, S. E. & Amundson, R. Biogeochemistry—soil warming and organic carbon content. Nature 408, 789–790 (2000).
Google Scholar
Chaturvedi, R. K. & Raghubanshi, A. S. Aboveground biomass estimation of small diameter woody species of tropical dry forest. New For. 44, 509–519 (2013).
Google Scholar
Wen, D. & He, N. P. Forest carbon storage along the north-south transect of eastern china: spatial patterns, allocation, and influencing factors. Ecol. Indic. 61, 960–967 (2016).
Google Scholar
Fan, S. et al. A large terrestrial carbon sink in North America implied by atmospheric andoceanic carbon dioxide data and models. Science 282, 442–446 (1998).
Google Scholar
Gough, C. M., Vogel, C. S., Schmid, H. P. & Curtis, P. S. Controls on annual forest carbon storage: lessons from the past and predictions for the future. Bioscience 58, 609–622 (2008).
Google Scholar
Van Deusen, P. Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation. Biomass Bioenerg. 34, 1687–1694 (2010).
Google Scholar
Bradford, J. B., Jensen, N. R., Domke, G. M. & D’Amato, A. W. Potential increases in natural disturbance rates could offset forest management impacts on ecosystem carbon stocks. For. Ecol. Manag. 308, 178–187 (2013).
Google Scholar
Park, A. Carbon storage and stand conversion in a pine-dominated boreal forest landscape. For. Ecol. Manag. 340, 70–81 (2015).
Google Scholar
Wang, S. J., Zhao, J. X. & Chen, Q. B. Controlling factors of soil CO2 efflux in Pinusyunnanensis across different stand ages. PLoS ONE 10(5), e0127274. https://doi.org/10.1371/journal.pone.0127274 (2015).
Google Scholar
Liu, J. et al. Distinct soil bacterial communities in response to the cropping system in a Mollisol of northeast China. Appl. Soil Ecol. 119, 407–416 (2017).
Google Scholar
Kavvadias, V. A. et al. Litterfall, litter accumulation and litter decomposition rates in four forest ecosystems in northern Greece. For. Ecol. Manag. 144, 113–127 (2001).
Google Scholar
Dai, W. et al. Spatial pattern of carbon stocks in forest ecosystems of a typical subtropical region of Southeastern China. For. Ecol. Manag. 409, 288–297 (2018).
Google Scholar
Liu, S. et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta. Ecol. Sin. 37(4), 1074–1083 (2017).
Google Scholar
Kern, J., Giani, L., Teixeira, W., Lanza, G. & Glaser, B. What can we learn from ancient fertile anthropic soil (Amazonian Dark Earths, shell mounds, Plaggen soil) for soil carbon sequestration?. CATENA 172, 104–112 (2019).
Google Scholar
Zhang, Z. H., Wang, L. C., Luo, J. X. & Zheng, D. R. Study on tree biomass models of Pinus Yunnanensis Faranch in Northwest Yunnan Province. J. Shandong For. Sci. Technol. 4, 4–6 (2011) ((in Chinese)).
Google Scholar
Chen, C. Biomass and production of the Arbor-Layers in Pinus armandii forests. J. Northwestern Coll. For. 1, 1–18 (1984) ((in Chinese)).
Liu, S. R., Su, Y. M., Cai, X. H. & Ma, Q. Y. Aboveground biomass of quercus aquifolioides shrub community and its responses to altitudinal gradients in balangshan mountain, Shichuan province. Sci. Silvae. Sin. 42, 1–7 (2006) ((in Chinese)).
Li, J. L., Liang, S. C. & Chen, S. Z. A preliminary study on the biomass models of keteleeria davidiana var chien-peii colony in qingyan town of Guizhou province. J. Guizhou Normal Univ. 15, 7–12 (1997) ((in Chinese)).
Google Scholar
Yang, L. L. et al. Carbon and nitrogen storage and distribution in four forest ecosystems in Liupan Mountains, northwestern China. Acta. Ecol. Sin. 35, 5215–5227 (2015) ((in Chinese)).
Xie, S. C., Liu, W. Y., Li, S. C. & Yang, G. P. Preliminary studies on the biomass of middle-mountain moist evergreen broadleaved forests in Ailao Mountain, Yunnan. Acta Phytoecol. Sin. 20, 167–176 (1996) ((in Chinese)).
Shen, Y., Tian, D. L., Yan, W. D. & Xiao, Y. Biomass and its distribution of natural secondary quercus fabri + sassafras tsumu+ cunninghamia lanceolata community in Yuanling county, Hunan province. J. Cent. South Univ. For. Technol. 31, 44–51 (2011) ((in Chinese)).
Google Scholar
Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Global Change Biol. 8, 345–360 (2002).
Google Scholar
Zhou, Y. R., Yu, Z. L. & Zhao, S. D. Carbon storage and budget of major Chinese forest types. Acta. Phytoecol. Sin. 24, 518–522 (2000) ((in Chinese)).
Eslamdoust, J. & Sohrabi, H. Carbon storage in biomass, litter, and soil of different native and introduced fast-growing tree plantations in the South Caspian Sea. J. For. Res. 29, 449–457 (2018).
Google Scholar
He, Y. J. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manag. 295, 193–198 (2013).
Google Scholar
Ren, H. et al. Spatial and temporal patterns of carbon storage from 1992 to 2002 in forest ecosystems in Guangdong, Southern China. Plant Soil 363, 123–138 (2013).
Google Scholar
Ali, F., Khan, N., Ahmad, A. & Khan, A. A. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush range mountains of Pakistan. Acta. Ecol. Sin. 39, 261–266 (2019).
Google Scholar
Ren, Y. et al. Potential for forest vegetation carbon storage in Fujian Province, China, determined from forest inventories. Plant Soil 345, 125–140 (2011).
Google Scholar
Fu, W. J. et al. Spatial variation of biomass carbon density in a subtropical region of Southeastern China. Forests 6, 1966–1981 (2015).
Google Scholar
Fonseca, W., Alice, F. E. & Rey-Benayas, J. M. Carbon accumulation in aboveground and belowground biomass and soil of different age native forest plantations in the humid tropical lowlands of Costa Rica. New For. 43, 197–211 (2012).
Google Scholar
Nelson, A., Saunders, M., Wagner, R. & Weiskittel, A. Early stand production of hybrid poplar and white spruce in mixed and monospecific plantations in eastern Maine. New For. 43, 519–534 (2012).
Google Scholar
Gao, Y., Cheng, J., Ma, Z., Zhao, Y. & Su, J. Carbon storage in biomass, litter, and soil of different plantations in a semiarid temperate region of northwest China. Ann. For. Sci. 71, 427–435 (2014).
Google Scholar
Fortier, J., Gagnon, D., Truax, B. & Lambert, F. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips. Biomass Bioenerg. 34, 1028–1040 (2010).
Google Scholar
González-Rodríguez, H. et al. Litterfall deposition and leaf litter nutrient return in different locations at Northeastern Mexico. Plant Ecol. 212, 1747–1757 (2011).
Google Scholar
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science https://doi.org/10.1126/science.1201609 (2011).
Google Scholar
Bradford, J. B., Birdsey, R. A., Joyce, L. A. & Ryan, M. G. Tree age, disturbance history and carbon stocks and fluxes in subalpine rocky mountain forests. Global Change Biol. 14, 2882–2897 (2008).
Google Scholar
Zhang, C. N., Yan, X. D. & Yang, J. H. Estimation of nitrogen reserves in forest soils of China. J. Southwest Agric. Univ. 26, 572-575+579 (2004) ((in Chinese)).
Lee, K. L., Ong, K. H., King, P. J. H., Chubo, J. K. & Su, D. S. A. Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turk. J. Agric. For. 39, 154–161 (2015).
Google Scholar
Cao, B., Domke, G. M., Russell, M. B. & Walters, B. F. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 654, 94–106 (2019).
Google Scholar
Deng, L., Wang, K. B., Chen, M. L., Shangguan, Z. P. & Sweeney, S. Soil organic carbon storage capacity positively related to forest succession on the Loess Plateau, China. CATENA 110, 1–7 (2013).
Google Scholar
Zhu, B. et al. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 123, 439–452 (2010).
Google Scholar
Xie, X. L., Sun, B., Zhou, H. Z. & Li, A. B. Soil organic carbon storage in China. Pedosphere 14, 491–500 (2004).
Google Scholar
Leuschner, C., Moser, G., Bertsch, C., Röderstein, M. & Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 8, 219–230 (2007).
Google Scholar
Singh, S. P., Adhikari, B. S. & Zobel, D. B. Biomass, productivity, leaf longevity, and forest structure in the central Himalaya. Ecol. Monog. 64, 401–421 (1994).
Google Scholar
Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming?. Biogeochemistry 27, 753–760 (2000).
Google Scholar
Raich, J. W., Russel, A. E., Kitayama, K., Parton, W. J. & Vitousek, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76–87 (2006).
Google Scholar
Source: Ecology - nature.com