in

Distribution of deadwood and other forest structural indicators relevant for bird conservation in Natura 2000 special protection areas in Poland

  • 1.

    Sundseth, K. & Creed, P. Natura 2000: Protecting Europe’s Biodiversity (Office for Official Publications of the European Communities, 2008).

    Google Scholar 

  • 2.

    Wilk, T., Jujka, M., Krogulec, J. & Chylarecki, P. Important Bird Areas of International Importance in Poland (OTOP, 2010).

    Google Scholar 

  • 3.

    European Commission. Report on the Status of and Trends for Habitat Types and Species Covered by the Birds and Habitats Directives for the 2007–2012 Period as Required Under Article 17 of the Habitats Directive and Article 12 of the Birds Directive (European Commission DG Environment, 2015).

    Google Scholar 

  • 4.

    Birds Directive. Council Directive 79/409/EEC on the Conservation of Wild Birds. http://www.jncc.gov.uk/page-1373 (1979).

  • 5.

    Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. & Norris, K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137, 348–357. https://doi.org/10.1016/j.agee.2010.03.005 (2010).

    Article 

    Google Scholar 

  • 6.

    Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687. https://doi.org/10.1016/j.ecolind.2019.04.064 (2019).

    Article 

    Google Scholar 

  • 7.

    European Commission. The Interpretation Manual of European Union Habitats (European Commission DG Environment, 2007).

    Google Scholar 

  • 8.

    Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).

    Article 

    Google Scholar 

  • 9.

    Bujoczek, M., Rybicka, J. & Bujoczek, L. Effects of disturbances in a subalpine forest on its structural indicators and bird diversity. Ecol. Indic. 112, 106126. https://doi.org/10.1016/j.ecolind.2020.106126 (2020).

    Article 

    Google Scholar 

  • 10.

    van Galen, L. G., Jordan, G. J. & Baker, S. C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 1, e55. https://doi.org/10.1111/csp2.55 (2019).

    Article 

    Google Scholar 

  • 11.

    Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159. https://doi.org/10.1111/1365-2664.13181 (2018).

    Article 

    Google Scholar 

  • 12.

    Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manag. 264, 110401. https://doi.org/10.1016/j.jenvman.2020.110401 (2020).

    Article 

    Google Scholar 

  • 13.

    Wesołowski, T. Lessons from long-term hole-nester studies in a primeval temperate forest. J. Ornithol. 148, 395–405. https://doi.org/10.1007/s10336-007-0198-1 (2007).

    Article 

    Google Scholar 

  • 14.

    Maziarz, M. & Broughton, R. K. Breeding microhabitat selection by Great Tits Parus major in a deciduous primeval forest (Białowieża National Park, Poland). Bird Study 62, 358–367. https://doi.org/10.1080/00063657.2015.1050994 (2015).

    Article 

    Google Scholar 

  • 15.

    Van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity nesting birds of the world. Divers. Distrib. 23, 1120–1131. https://doi.org/10.1111/ddi.12601 (2017).

    Article 

    Google Scholar 

  • 16.

    McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).

    Article 

    Google Scholar 

  • 17.

    Holmes, R. T., Bonney, R. E. & Pacala, S. W. Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology 60, 512–520. https://doi.org/10.2307/1936071 (1979).

    Article 

    Google Scholar 

  • 18.

    Lain, E. J., Haney, A., Burris, J. M. & Burton, J. Response of vegetation and birds to severe wind disturbance and salvage logging in a southern boreal forest. For. Ecol. Manag. 256, 863–871. https://doi.org/10.1016/j.foreco.2008.05.018 (2008).

    Article 

    Google Scholar 

  • 19.

    Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forest: A hierarchical typology for inventory standarization. Ecol. Indic. 83, 194–207. https://doi.org/10.1016/j.ecolind.2017.08.051 (2018).

    Article 

    Google Scholar 

  • 20.

    Zielewska-Büttner, K., Heurich, M., Müller, J. & Braunisch, V. Remotely sensed single tree data enable the determination of habitat thresholds for the three-toed woodpecker (Picoides tridactylus). Remote Sens. 10, 1972. https://doi.org/10.3390/rs10121972 (2018).

    ADS 
    Article 

    Google Scholar 

  • 21.

    Mikusiński, G., Gromadzki, M. & Chylarecki, P. Woodpeckers as indicators of forest bird diversity. Conserv. Biol. 15, 208–217 (2001).

    Article 

    Google Scholar 

  • 22.

    Wesołowski, T. & Rowiński, P. The breeding behaviour of the Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51, 143–155. https://doi.org/10.1080/00063650409461346 (2004).

    Article 

    Google Scholar 

  • 23.

    Barbaro, L. et al. Hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in oldgrowth forests of the southern French Prealps. J. Ornithol. 157, 333–342. https://doi.org/10.1007/s10336-015-1285-3 (2016).

    Article 

    Google Scholar 

  • 24.

    Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).

    Google Scholar 

  • 25.

    Harestad, A. S. & Keisker, D. G. Nest tree use by primary cavity-nesting birds in south central British Columbia. Can. J. Zool. 67, 1067–1073. https://doi.org/10.1139/z89-148 (1989).

    Article 

    Google Scholar 

  • 26.

    Walankiewicz, W., Czeszczewik, D., Mitrus, C. & Bida, E. Znaczenie martwych drzew dla zespołu dzięciołów w lasach liściastych Puszczy Białowieskiej. Notatki Ornitol. 43, 61–71 (2002).

    Google Scholar 

  • 27.

    Czeszczewik, D. & Walankiewicz, W. Natural nest sites of the Pied Flycatcher Ficedula hypoleuca in a primeval forest. Ardea 91, 221–230 (2003).

    Google Scholar 

  • 28.

    Kosiński, Z. & Kempa, M. Density distribution and nest−sites selection of woodpeckers Picidae in managed forest of western Poland. Pol. J. Ecol. 55, 519–533 (2007).

    Google Scholar 

  • 29.

    Zawadzka, D. & Zawadzki, G. Charakterystyka drzew gniazdowych dzięcioła czarnego w Puszczy Augustowskiej. Sylwan 161, 1002–1009 (2017).

    Google Scholar 

  • 30.

    Urban, D. L. & Smith, T. M. Microhabitat pattern and the structure of forest bird communities. Am. Nat. 133, 811–829. https://doi.org/10.1086/284954 (1989).

    Article 

    Google Scholar 

  • 31.

    Piechnik, Ł, Kurek, P., Ledwoń, M. & Holeksa, J. Both natural and anthropogenic microhabitats and fine-scale habitat features of managed forest can affect the abundance of the Eurasian Wren. For. Ecol. Manag. 456, 117695. https://doi.org/10.1016/j.foreco.2019.117695 (2020).

    Article 

    Google Scholar 

  • 32.

    Sefidi, K., EsfandiaryDarabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest 9, 658. https://doi.org/10.3832/ifor1080-008 (2016).

    Article 

    Google Scholar 

  • 33.

    Oettel, J. et al. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. For. Ecol. Manag. 463, 118016. https://doi.org/10.1016/j.foreco.2020.118016 (2020).

    Article 

    Google Scholar 

  • 34.

    Bashta, A. T. V. Biotope distribution and habitat preference of breeding bird communities in alpine and subalpine belts in the Tatra and Babia Gora Mts. (Southern Poland). Berkut 14, 145–161 (2005).

    Google Scholar 

  • 35.

    Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160. https://doi.org/10.1017/S0376892915000363 (2016).

    Article 

    Google Scholar 

  • 36.

    Dellinger, R. L., Wood, P. B., Keyser, P. D. & Seidel, G. Habitat partitioning of four sympatric thrush species at three spatial scales on a managed forest in West Virginia. Auk 124, 1425–1438. https://doi.org/10.1093/auk/124.4.1425 (2007).

    Article 

    Google Scholar 

  • 37.

    Leidinger, J. et al. Formerly managed forest reserves complement integrative management for biodiversity conservation in temperate European forests. Biol. Conserv. 242, 108437. https://doi.org/10.1016/j.biocon.2020.108437 (2020).

    Article 

    Google Scholar 

  • 38.

    Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615. https://doi.org/10.1016/j.gecco.2019.e00615 (2019).

    Article 

    Google Scholar 

  • 39.

    Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 129, 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).

    Article 

    Google Scholar 

  • 40.

    Kajtoch, Ł, Figarski, T. & Pełka, J. The role of forest structural elements in determining the occurrence of two specialist woodpecker species in the Carpathians, Poland. Ornis Fenn. 90, 23–40 (2013).

    Google Scholar 

  • 41.

    Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).

    Article 

    Google Scholar 

  • 42.

    Hunter, M. Jr. et al. Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecol. Indic. 63, 121–125. https://doi.org/10.1016/j.ecolind.2015.11.049 (2016).

    Article 

    Google Scholar 

  • 43.

    NFI. Wielkoobszarowa inwentaryzacja stanu lasu. Wyniki za okres 2009–2013 (Biuro Urządzania Lasu i Geodezji Leśnej, 2014).

    Google Scholar 

  • 44.

    CRFOP. Centralny Rejestr Form Ochrony Przyrody. http://crfop.gdos.gov.pl/CRFOP/ (2020).

  • 45.

    GDOS. Generalna Dyrekcja Ochrony Środowiska. https://www.gdos.gov.pl/dane-i-metadane (2020).

  • 46.

    BDL. Bank Danych o Lasach. https://www.bdl.lasy.gov.pl/portal (2020).

  • 47.

    Qgis 3.10. QGIS Geographic Information System. http://www.qgis.org (QGIS Association, 2020).

  • 48.

    ME. Instrukcja wykonywania wielkoobszarowej inwentaryzacji stanu lasu (Typescript of the Ministry of the Environment, 2010).

    Google Scholar 

  • 49.

    Talarczyk, A. National forest inventory in Poland. Balt. For. 20, 333–341 (2014).

    Google Scholar 

  • 50.

    Standard Data Form. Instrukcja wypełniania Standardowych Formularzy Danych. http://natura2000.gdos.gov.pl (2012).

  • 51.

    Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manag. 356, 216–223. https://doi.org/10.1016/j.foreco.2015.07.011 (2015).

    Article 

    Google Scholar 

  • 52.

    Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manag. 407, 95–105. https://doi.org/10.1016/j.foreco.2017.09.002 (2017).

    Article 

    Google Scholar 

  • 53.

    Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest Biogeosci. For. 8, 377–385. https://doi.org/10.3832/ifor1212-007 (2015).

    Article 

    Google Scholar 

  • 54.

    Czuraj, M. Tablice miąższości kłód odziomkowych i drzew stojących (PWRiL, 1990).

    Google Scholar 

  • 55.

    Oramus, M. Breeding habitat of wren (Troglodytes troglodytes) in lower mountain zone forests in Gorce National Park. Master thesis (University of Agriculture in Krakow, Faculty of Forestry, Department of Forest Biodiversity 2017).

  • 56.

    Statistica 13 software. Dell Statistica (data analysis software system), version 13. software.dell.com (2016).

  • 57.

    Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343. https://doi.org/10.3390/f11030343 (2020).

    Article 

    Google Scholar 

  • 58.

    Morán-López, R., Cortés Gañán, E., Uceda Tolosa, O. & Sánchez Guzmán, J. M. The umbrella effect of Natura 2000 annex species spreads over multiple taxonomic groups, conservation attributes and organizational levels. Anim. Conserv. https://doi.org/10.1111/acv.12551 (2019).

    Article 

    Google Scholar 

  • 59.

    Lindenmayer, D. B., Franklin, J. F. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445. https://doi.org/10.1016/j.biocon.2006.02.019 (2006).

    Article 

    Google Scholar 

  • 60.

    Gruber, B. et al. “Mind the gap!”—How well does Natura 2000 cover species of European interest?. Nat. Conserv. 3, 45–62. https://doi.org/10.3897/natureconservation.3.3732 (2012).

    Article 

    Google Scholar 

  • 61.

    Kukkala, A. S. et al. Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol. Conserv. 198, 193–201. https://doi.org/10.1016/j.biocon.2016.04.016 (2016).

    Article 

    Google Scholar 

  • 62.

    Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813. https://doi.org/10.1126/science.1146002 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Nilsson, L., Bunnefeldb, N., Perssonc, J., Žydelisd, R. & Månssona, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7. https://doi.org/10.1016/j.biocon.2019.05.006 (2019).

    Article 

    Google Scholar 

  • 64.

    Winter, S. et al. The impact of Natura 2000 on forest management: A socio-ecological analysis in the continental region of the European Union. Biodivers. Conserv. 23, 3451–3482. https://doi.org/10.1007/s10531-014-0822-3 (2014).

    Article 

    Google Scholar 

  • 65.

    Zisenis, M. Is the Natura 2000 network of the European Union the key land use policy tool for preserving Europe’s biodiversity heritage?. Land Use Policy 69, 408–416. https://doi.org/10.1016/j.landusepol.2017.09.045 (2017).

    Article 

    Google Scholar 

  • 66.

    Bashta, A. T. V. Breeding bird community of monocultural spruce plantation in the Skolivski Beskids (the Ukrainian Carpathians). Berkut 8, 9–14 (1999).

    Google Scholar 

  • 67.

    Baláž, M. & Balážová, M. Diversity and abundance of bird communities in three mountain forest stands: Effect of the habitat heterogeneity. Pol. J. Ecol. 60, 629–634 (2012).

    Google Scholar 

  • 68.

    Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68. https://doi.org/10.1007/s13595-019-0832-0 (2019).

    Article 

    Google Scholar 

  • 69.

    Nappi, A., Drapeau, P. & Leduc, A. How important is dead wood for woodpeckers foraging in eastern North American boreal forests?. For. Ecol. Manag. 346, 10–21. https://doi.org/10.1016/j.foreco.2015.02.028 (2015).

    Article 

    Google Scholar 

  • 70.

    Raphael, M. & White, M. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. 86, 3–66 (1984).

    Google Scholar 

  • 71.

    Bujoczek, L., Bujoczek, M. & Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 121, 107027. https://doi.org/10.1016/j.ecolind.2020.107027 (2021).

    Article 

    Google Scholar 

  • 72.

    Lešo, P., Kropil, R. & Kajtoch, Ł. Effects of forest management on bird assemblages in oak-dominated stands of the Western Carpathians-Refuges for rare species. For. Ecol. Manag. 453, 117620. https://doi.org/10.1016/j.foreco.2019.117620 (2019).

    Article 

    Google Scholar 

  • 73.

    De Zan, L. R., de Gasperis, S. R., Fiore, L., Battisti, C. & Carpaneto, G. M. The importance of dead wood for hole-nesting birds: A two years study in three beech forests of central Italy. Isr. J. Ecol. Evol. 63(1), 19–27. https://doi.org/10.1080/15659801.2016.1191168 (2017).

    Article 

    Google Scholar 

  • 74.

    Wilk, T., Bobrek, R., Pępkowska-Krol, A., Neubauer, G. & Kosicki, J. Z. The Birds of the Polish Carpathians—Status, Threats, Conservation (OTOP, 2016).

    Google Scholar 

  • 75.

    Jonsson, B. G. et al. Dead wood availability in managed Swedish forests–Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182. https://doi.org/10.1016/j.foreco.2016.06.017 (2016).

    Article 

    Google Scholar 

  • 76.

    Lõhmus, A. Do Ural owls (Strix uralensis) suffer from the lack of nest sites in managed forests?. Biol. Conserv. 110, 1–9. https://doi.org/10.1016/S0006-3207(02)00167-2 (2003).

    Article 

    Google Scholar 

  • 77.

    Tanona, M. & Czarnota, P. Natural disturbances of the structure of Norway spruce forests in Europe and their impact on the preservation of epixylic lichen diversity: A review. Ecol. Quest. 30, 1–17. https://doi.org/10.12775/EQ.2019.024 (2019).

    Article 

    Google Scholar 

  • 78.

    Repel, M., Zámečník, M. & Jarčuška, B. Temporal changes in bird communities of wind-affected coniferous mountain forest in differently disturbed stands (High Tatra Mts., Slovakia). Biologia 75, 1931–1943. https://doi.org/10.2478/s11756-020-00455-5 (2020).

    Article 

    Google Scholar 

  • 79.

    Přívětivý, T. et al. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)?. For. Ecol. Manag. 381, 177–187. https://doi.org/10.1016/j.foreco.2016.09.033 (2016).

    Article 

    Google Scholar 

  • 80.

    Wichmann, G. Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J. Ornithol. 145, 69–73. https://doi.org/10.1007/s10336-003-0013-6 (2004).

    Article 

    Google Scholar 

  • 81.

    Müller, D., Schröder, B. & Müller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J. Ornithol. 150, 717–732. https://doi.org/10.1007/s10336-009-0390-6 (2009).

    Article 

    Google Scholar 

  • 82.

    Storch, I. Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biol. Conserv. 70, 237–243. https://doi.org/10.1016/0006-3207(94)90168-6 (1994).

    Article 

    Google Scholar 

  • 83.

    Swenson, J. E. The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10, 227–238 (1995).

    Google Scholar 

  • 84.

    Drapeau, P., Nappi, A., Imbeau, L. & Saint-Germain, M. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. For. Chron. 85, 227–234. https://doi.org/10.5558/tfc85227-2 (2009).

    Article 

    Google Scholar 

  • 85.

    Mikusiński, G. et al. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biol. Conserv. 227, 266–274. https://doi.org/10.1016/j.biocon.2018.09.001 (2018).

    Article 

    Google Scholar 

  • 86.

    Dufour-Pelletier, S., Tremblay, J. A., Hébert, C., Lachat, T. & Ibarzabal, J. Testing the effect of snag and cavity supply on deadwood-associated species in a managed boreal forest. Forests 11, 424. https://doi.org/10.3390/f11040424 (2020).

    Article 

    Google Scholar 

  • 87.

    Pirovano, A. R. & Zecca, G. Black Woodpecker Dryocopus martius habitat selection in the Italian Alps: Implications for conservation in Natura 2000 network. Bird Conserv. Int. 24, 299–315. https://doi.org/10.1017/S0959270913000439 (2014).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing emissions by decarbonizing industry

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon