in

Distribution of trace elements in benthic infralittoral organisms from the western Antarctic Peninsula reveals no latitudinal gradient of pollution

  • 1.

    IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). Compiled by McNaught, A. D. & Wilkinson, A. (Blackwell Scientific Publications, 1997).

  • 2.

    Bolan, N. S., Adriano, D. C. & Naidu, R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. In Reviews of Environmental Contamination and Toxicology Vol. 177 (ed. Ware, G. W.) 1–44 (Springer, 2003).

    Chapter 

    Google Scholar 

  • 3.

    Marcovecchio, J., Botté, S., Domini, C. & Freije, R. Heavy metals, major metals, trace elements. In Handbook of Water Analysis (eds Nollet, L. M. L. & De Gelder, L. S. P.) 379–428 (CRC Press, 2013).

    Google Scholar 

  • 4.

    Wedepohl, H. K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 5.

    Santos, I. R., Silva-Filho, E. V., Schaefer, C. E. G. R., Albuquerque-Filho, M. R. & Campos, L. S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar. Pollut. Bull. 50, 185–194 (2005).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Kabata-Pendias, A. Trace elements in soils and plants, 4th ed. (CRC Press, 2010).

  • 8.

    Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 598, 220–227 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 9.

    Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400, 212–226 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Lenihan, H. S., Oliver, J. S., Oakden, J. M. & Stephenson, M. D. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Mar. Pollut. Bull. 21, 422–430 (1990).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Santos, I. R. et al. Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ. Pollut. 140, 304–311 (2006).

    Article 
    CAS 

    Google Scholar 

  • 12.

    Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33 (2009).

    ADS 
    Article 

    Google Scholar 

  • 13.

    Corsolini, S. Industrial contaminants in Antarctic biota. J. Chromatogr. A 1216, 598–612 (2009).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 8150–8155 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Planchon, F. A. M. et al. Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 200, 207–222 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 16.

    Szopińska, M., Namieśnik, J. & Polkowska, Ż How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. In Reviews of Environmental Contamination and Toxicology Vol. 239 (ed. de Voogt, P.) 79–156 (Springer, 2017).

    Google Scholar 

  • 17.

    Bengtson Nash, S. et al. Contaminant profiles of air and soil around Casey station, Antarctica; discerning local and distant contaminant sources. In 21st Society for Environmental Toxicology and Chemistry (SETAC) Europe Annual Meeting Proceedings (2011).

  • 18.

    Boutron, C. F. & Patterson, C. C. Relative levels of natural and anthropogenic lead in recent Antarctic snow. J. Geophys. Res. 92, 8454–8464 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Dick, A. L. Concentrations and sources of metals in the Antarctic Peninsula aerosol. Geochim. Cosmochim. Acta 55, 1827–1836 (1991).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 20.

    de Moreno, J. E. A., Gerpe, M. S., Moreno, V. J. & Vodopivez, C. Heavy metals in Antarctic organisms. Polar Biol. 17, 131–140 (1997).

    Article 

    Google Scholar 

  • 21.

    Kennicutt, I. M. C. et al. Human contamination of the marine environment-arthur harbor and mcmurdo sound, Antarctica. Environ. Sci. Technol. 29, 1279–1287 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 22.

    Hughes, K. A. & Ashton, G. V. Breaking the ice: The introduction of biofouling organisms to Antarctica on vessel hulls. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 158–164 (2017).

    Article 

    Google Scholar 

  • 23.

    Aston, S. R. & Thornton, I. Regional geochemical data in relation to seasonal variations in water quality. Sci. Total Environ. 7, 247–260 (1977).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 24.

    Norwood, W. P., Borgmann, U. & Dixon, D. G. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Environ. Pollut. 143, 519–528 (2006).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ. Pollut. 143, 456–467 (2006).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Trevizani, T. H. et al. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 106, 366–371 (2016).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Trevizani, T. H., Petti, M. A. V., Ribeiro, A. P., Corbisier, T. N. & Figueira, R. C. L. Heavy metal concentrations in the benthic trophic web of Martel Inlet, Admiralty Bay (King George Island, Antarctica). Mar. Pollut. Bull. 130, 198–205 (2018).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Cipro, C. V. Z., Montone, R. C. & Bustamante, P. Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. Mar. Pollut. Bull. 114, 564–570 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    de Oliveira, M. F. et al. Evidence of metabolic microevolution of the limpet Nacella concinna to naturally high heavy metal levels in Antarctica. Ecotoxicol. Environ. Saf. 135, 1–9 (2017).

    Article 
    CAS 

    Google Scholar 

  • 31.

    Torres, M. A. et al. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicol. Environ. Saf. 71, 1–15 (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Neff, J. M. Bioaccumulation in Marine Organisms. Effect of Contaminants from Oil Well Produced Water. Organic Geochemistry (Elsevier, 2002).

    Google Scholar 

  • 33.

    Wong, P. T. & Trevors, J. T. Chromium toxicity to algae and bacteria. In Chromium in the Natural and Human Environments (eds Nriagu, J. O. & Nieboer, E.) 305–315 (Wiley, 1988).

    Google Scholar 

  • 34.

    Community, E. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Parliam. L327, 1–82 (2000).

    Google Scholar 

  • 35.

    Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).

    ADS 
    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Pertierra, L. R. et al. Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities. Ecosyst. Serv. 49, 101299 (2021).

    Article 

    Google Scholar 

  • 37.

    Pringle, B. H., Hissong, D. E., Katz, E. L. & Mulawka, S. T. Trace metal accumulation by estuarine mollusks. J. Sanit. Eng. Div. Proc. Amer. Soc. Civ. Eng. 94, 455–475 (1968).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Amiard, J. C., Amiard-Triquet, C., Berthet, B. & Metayer, C. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J. Exp. Mar. Bio. Ecol. 106, 73–89 (1987).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Borgmann, U., Norwood, W. P. & Clarke, C. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella azteca. Hydrobiologia 259, 79–89 (1993).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Windom, H. & Kendall, D. R. Accumulation and biotransformation of mercury in coastal and marine biota. In The Biogeochemistry of Mercury in the Environment (ed. Nriagu, J. O.) 303–323 (Elsevier/North-Holland Biomedical Press, 1979).

    Google Scholar 

  • 41.

    Turner, S. J. et al. Are soft-sediment communities stable? An example from a windy harbour. Mar. Ecol. Prog. Ser. 120, 219–230 (1995).

    ADS 
    Article 

    Google Scholar 

  • 42.

    Caccia, V. G., Millero, F. J. & Palanques, A. The distribution of trace metals in Florida Bay sediments. Mar. Pollut. Bull. 46, 1420–1433 (2003).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Gibbs, R. J. Transport phases of transition metals in the Amazon and Yukon Rivers. Bull. Geol. Soc. Am. 88, 829–843 (1977).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Jain, C. K. & Sharma, M. K. Distribution of trace metals in the Hindon River system, India. J. Hydrol. 253, 81–90 (2001).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 45.

    Filgueiras, A. V., Lavilla, I. & Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4, 823–857 (2002).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer, 1984).

    Book 

    Google Scholar 

  • 47.

    Niimi, A. J. & Kissoon, G. P. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 26, 169–178 (1994).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Landrum, P. F., Lydy, M. J. & Lee, H. Toxicokinetics in aquatic systems: Model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 11, 1709–1725 (1992).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Wiener, J. G. et al. Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In Ecosystem Responses to Mercury Contamination: Indicators of Change (eds Harris, R. et al.) 87–122 (CRC Press & SETAC Press, 2007).

    Chapter 

    Google Scholar 

  • 50.

    Dunton, K. H. δ15N and δ13C measurements of Antarctic Peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am. Zool. 41, 99–112 (2001).

    Google Scholar 

  • 51.

    Corbisier, T. N., Petti, M. A. V., Skowronski, R. S. P. & Brito, T. A. S. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol. 27, 75–82 (2004).

    Article 

    Google Scholar 

  • 52.

    Norkko, A. et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 2810–2820 (2007).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 1–11 (2019).

    Google Scholar 

  • 54.

    Zenteno, L. et al. Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Prog. Oceanogr. 174, 55–63 (2019).

    ADS 
    Article 

    Google Scholar 

  • 55.

    Cardona, L., Lloret-Lloret, E., Moles, J. & Avila, C. Latitudinal changes in the trophic structure of benthic coastal food webs in the Antarctic Peninsula. Mar. Environ. Res. 167, 105290 (2021).

    CAS 
    Article 

    Google Scholar 

  • 56.

    COMNAP. Antarctic Station Catalogue (COMNAP Secretariat, 2017).

  • 57.

    Wiencke, C., Amsler, C. & Clayton, M. Macroalgae. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 66–73 (Scientific Committee on Antarctic Research, 2014).

    Google Scholar 

  • 58.

    Danis, B., Griffiths, H. J. & Jangoux, M. Asteroidea. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 200–207 (Scientific Committee on Antarctic Research, 2014).

    Google Scholar 

  • 59.

    Schiaparelli, S. & Linse, K. Gastropoda. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 122–125 (Scientific Committee on Antarctic Research, 2014).

    Google Scholar 

  • 60.

    Borrell, A., Tornero, V., Bhattacharjee, D. & Aguilar, A. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci. Total Environ. 545–546, 414–423 (2016).

    ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Torres, J., Eira, C., Miquel, J. & Feliu, C. Heavy metal accumulation by intestinal helminths of vertebrates. Recent Adv. Pharm. Sci. II(661), 169–181 (2012).

    Google Scholar 

  • 62.

    Vighi, M., Borrell, A. & Aguilar, A. Bone as a surrogate tissue to monitor metals in baleen whales. Chemosphere 171, 81–88 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 63.

    Borrell, A., Aguilar, A., Tornero, V. & Drago, M. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 107, 319–323 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 64.

    Borrell, A., Clusa, M., Aguilar, A. & Drago, M. Use of epidermis for the monitoring of tissular trace elements in Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 122, 288–294 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 65.

    Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G. & de Sostoa, A. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci. Total Environ. 449, 9–19 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 66.

    Suda, C. N. K. et al. The biology and ecology of the Antarctic limpet Nacella concinna. Polar Biol. 38, 1949–1969 (2015).

    Article 

    Google Scholar 

  • 67.

    Škrbić, B., Crossed, D. & Signurišić-Mladenović, N. Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements. Serbia. Environ. Monit. Assess. 185, 457–471 (2013).

    Article 
    CAS 

    Google Scholar 

  • 68.

    Škrbić, B. D., Buljovčić, M., Jovanović, G. & Antić, I. Seasonal, spatial variations and risk assessment of heavy elements in street dust from Novi Sad, Serbia. Chemosphere 205, 452–462 (2018).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 69.

    Škrbić, B., Durišić-Mladenović, N. & Cvejanov, J. Principal component analysis of trace elements in Serbian wheat. J. Agric. Food Chem. 53, 2171–2175 (2005).

    Article 
    CAS 

    Google Scholar 

  • 70.

    Wilde, E. W. & Benemann, J. R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11, 781–812 (1993).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Farías, S., Arisnabarreta, S. P., Vodopivez, C. & Smichowski, P. Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochim. Acta B 57, 2133–2140 (2002).

    ADS 
    Article 

    Google Scholar 

  • 72.

    Black, W. A. P. & Mitchell, R. L. Trace elements in the common algae and in sea water. J. Mar. Biol. Assoc. UK 30, 1–10 (1952).

    Article 

    Google Scholar 

  • 73.

    Lignell, A., Roomans, G. M. & Pedersen, M. Localization of absorbed cadmium in Fucus vesiculosus L. by X-ray microanalysis. Z. Pflanzenphysiol. 105, 103–109 (1982).

    CAS 
    Article 

    Google Scholar 

  • 74.

    Ragan, M. A., Smidsrød, O. & Larsen, B. Chelation of divalent metal ions by brown algal polyphenols. Mar. Chem. 7, 265–271 (1979).

    CAS 
    Article 

    Google Scholar 

  • 75.

    Talarico, L. Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ. Pollut. 120, 813–821 (2002).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Vasconcelos, M. T. S. D. & Leal, M. F. C. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar. Chem. 74, 65–85 (2001).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Pellegrini, L., Delivopoulos, S. G. & Pellegrini, M. Arsenic-induced ultrastructural changes in the vegetative cells of Cystoseira barbata forma repens Zinova et Kalugina (Fucophyceae, Fucales). Bot. Mar. 33, 229–234 (1990).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Deheyn, D. D., Gendreau, P., Baldwin, R. J. & Latz, M. I. Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar. Environ. Res. 60, 1–33 (2005).

    CAS 
    Article 

    Google Scholar 

  • 79.

    Exley, C. Silicon in life: A bioinorganic solution to bioorganic essentiality. J. Inorg. Biochem. 69, 139–144 (1998).

    CAS 
    Article 

    Google Scholar 

  • 80.

    Costa, R. R. et al. Dynamics of an intense diatom bloom in the Northern Antarctic Peninsula, February 2016. Limnol. Oceanogr. 65, 2056–2075 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 81.

    Mendes, C. R. B. et al. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep. Res. I 65, 1–14 (2012).

    CAS 
    Article 

    Google Scholar 

  • 82.

    Ducklow, H. W. et al. Marine pelagic ecosystems: The West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).

    Article 

    Google Scholar 

  • 83.

    Prezelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).

    Article 

    Google Scholar 

  • 84.

    Bargagli, R., Monaci, F. & Cateni, D. Marine coastal food web. Mar. Ecol. Prog. Ser. 169, 65–76 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 85.

    Collier, R. & Edmond, J. The trace element geochemistry of marine biogenic particulate matter. Prog. Oceanogr. 13, 113–199 (1984).

    ADS 
    Article 

    Google Scholar 

  • 86.

    Rubio, C. et al. Metals in edible seaweed. Chemosphere 173, 572–579 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 87.

    Desideri, D. et al. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health A 79, 112–122 (2016).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Runcie, J. W. & Riddle, M. J. Metal concentrations in macroalgae from East Antarctica. Mar. Pollut. Bull. 49, 1114–1119 (2004).

    CAS 
    Article 

    Google Scholar 

  • 89.

    Fowler, S. W., Villeneuve, J. P., Wyse, E., Jupp, B. & de Mora, S. Temporal survey of petroleum hydrocarbons, organochlorinated compounds and heavy metals in benthic marine organisms from Dhofar, southern Oman. Mar. Pollut. Bull. 54, 357–367 (2007).

    CAS 
    Article 

    Google Scholar 

  • 90.

    Curtosi, A., Pelletier, E., Vodopivez, C., St Louis, R. & MacCormack, W. P. Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch. Environ. Contam. Toxicol. 59, 582–592 (2010).

    CAS 
    Article 

    Google Scholar 

  • 91.

    Ahn, I. Y., Kim, K. W. & Choi, H. J. A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George Island: Variations with sex and body parts. Mar. Pollut. Bull. 44, 424–431 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 92.

    Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974).

    Article 

    Google Scholar 

  • 93.

    Pearse, J. S. Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common Antarctic
    asteroid. Antarct. Res. Ser. 5, 39–85 (1965).

  • 94.

    Peckham, V. Year-round SCUBA diving in the Antarctic. Polar Rec. 12, 143–146 (1964).

    Article 

    Google Scholar 

  • 95.

    Smale, D. A., Barnes, D. K. A., Fraser, K. P. P., Mann, P. J. & Brown, M. P. Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. J. Exp. Mar. Bio. Ecol. 349, 405–417 (2007).

    Article 

    Google Scholar 

  • 96.

    Mcclintock, J. B. Trophic biology of antarctic shallow-water echinoderms. Mar. Ecol. Prog. Ser. 111, 191–202 (1994).

    ADS 
    Article 

    Google Scholar 

  • 97.

    Grotti, M. et al. Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarct. Sci. 20, 39–51 (2008).

    ADS 
    Article 

    Google Scholar 

  • 98.

    Papadopoulou, C., Kanias, G. D. & Moraitopoulou-Kassimati, E. Stable elements of radioecological importance in certain echinoderm species. Mar. Pollut. Bull. 7, 143–144 (1976).

    CAS 
    Article 

    Google Scholar 

  • 99.

    Di Giglio, S. et al. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. Sci. Total Environ. 765, 142669 (2020).

    Article 
    CAS 

    Google Scholar 

  • 100.

    Danis, B. et al. Contaminant levels in sediments and asteroids (Asterias rubens L., Echinodermata) from the Belgian coast and Scheldt estuary: Polychlorinated biphenyls and heavy metals. Sci. Total Environ. 333, 149–165 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 101.

    Riva, S. D., Abelmoschi, M. L., Magi, E. & Soggia, F. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea: Northern Victoria Land). Chemosphere 56, 59–69 (2004).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 102.

    Cabrita, M. T. et al. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antartica. Mar. Pollut. Bull. 121, 192–200 (2017).

    CAS 
    Article 

    Google Scholar 

  • 103.

    Truzzi, C. et al. Separation of micro-phytoplankton from inorganic particulate in Antarctic seawater (Ross Sea) for the determination of Cd, Pb and Cu: Optimization of the analytical methodology. Anal. Methods 7, 5490–5496 (2015).

    Article 

    Google Scholar 

  • 104.

    Bargagli, R. Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. in Reviews of Environmetal Contamination and Toxicology (ed. Ware, G. W.) vol. 171, 53–110 (2001).

  • 105.

    Focardi, S., Bargagli, R. & Corsolini, S. Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarct. Sci. 7, 31–35 (1995).

    ADS 
    Article 

    Google Scholar 

  • 106.

    Demina, L. L. & Nemirovskaya, I. A. Spatial distribution of microelements in the seston of the White Sea. Oceanology 47, 360–372 (2007).

    ADS 
    Article 

    Google Scholar 

  • 107.

    Wiencke, C. & Amsler, C. D. Seaweeds and their communities in polar regions. In Seaweed Biology (eds Wiencke, C. & Bischof, K.) 265–291 (Springer, 2012).

    Chapter 

    Google Scholar 

  • 108.

    Fairhead, V. A., Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. Oceanology 322, 1–12 (2005).

    CAS 

    Google Scholar 

  • 109.

    Amsler, C. D. Algal chemical ecology: Algal Chemical Ecology (Springer, 2008).

    Book 

    Google Scholar 

  • 110.

    Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J. Phycol. 50, 1–10 (2014).

    Article 

    Google Scholar 

  • 111.

    Aumack, C. F., Amsler, C. D., McClintock, J. B. & Baker, B. J. Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur. J. Phycol. 45, 19–26 (2010).

    Article 

    Google Scholar 

  • 112.

    Núñez-Pons, L., Rodríguez-Arias, M., Gómez-Garreta, A., Ribera-Siguán, A. & Avila, C. Feeding deterrency in Antarctic marine organisms: Bioassays with the omnivore amphipod Cheirimedon femoratus. Eur. J. Phycol. 462, 163–174 (2012).

    Google Scholar 

  • 113.

    Ahn, I. Y., Chung, K. H. & Choi, H. J. Influence of glacial runoff on baseline metal accumulation in the Antarctic limpet Nacella concinna from King George Island. Mar. Pollut. Bull. 49, 119–127 (2004).

    CAS 
    Article 

    Google Scholar 

  • 114.

    Burdon-Jones, C., Denton, G. R. W., Jones, G. B. & McPhie, K. A. Regional and seasonal variations of trace metals in tropical phaeophyceae from North Queensland. Mar. Environ. Res. 7, 13–30 (1982).

    CAS 
    Article 

    Google Scholar 

  • 115.

    Augier, H., Gilles, G., Leal Nascimento, M. & Ramonda, G. Évolution de la contamination de la flore et de la faune marines benthiques de la Baie de Port-Cros de 1976 à 1981. Trav. Sci. Parc Natl. Port-Cros 10, 37–50 (1984).

    Google Scholar 

  • 116.

    Chakraborty, S., Bhattacharya, T., Singh, G. & Maity, J. P. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol. Environ. Saf. 100, 61–68 (2014).

    CAS 
    Article 

    Google Scholar 

  • 117.

    Pastor, A. et al. Levels of heavy metals in some marine organisms from the western Mediterranean area (Spain). Mar. Pollut. Bull. 28, 50–53 (1994).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Electrifying cars and light trucks to meet Paris climate goals

    Global warming begets more warming, new paleoclimate study finds