IUPAC. Compendium of Chemical Terminology, 2nd ed. (the ‘Gold Book’). Compiled by McNaught, A. D. & Wilkinson, A. (Blackwell Scientific Publications, 1997).
Bolan, N. S., Adriano, D. C. & Naidu, R. Role of phosphorus in (im)mobilization and bioavailability of heavy metals in the soil-plant system. In Reviews of Environmental Contamination and Toxicology Vol. 177 (ed. Ware, G. W.) 1–44 (Springer, 2003).
Google Scholar
Marcovecchio, J., Botté, S., Domini, C. & Freije, R. Heavy metals, major metals, trace elements. In Handbook of Water Analysis (eds Nollet, L. M. L. & De Gelder, L. S. P.) 379–428 (CRC Press, 2013).
Wedepohl, H. K. The composition of the continental crust. Geochim. Cosmochim. Acta 59, 1217–1232 (1995).
Google Scholar
Santos, I. R., Silva-Filho, E. V., Schaefer, C. E. G. R., Albuquerque-Filho, M. R. & Campos, L. S. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar. Pollut. Bull. 50, 185–194 (2005).
Google Scholar
Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z. & Zhu, Y. G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 152, 686–692 (2008).
Google Scholar
Kabata-Pendias, A. Trace elements in soils and plants, 4th ed. (CRC Press, 2010).
Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total Environ. 598, 220–227 (2017).
Google Scholar
Bargagli, R. Environmental contamination in Antarctic ecosystems. Sci. Total Environ. 400, 212–226 (2008).
Google Scholar
Lenihan, H. S., Oliver, J. S., Oakden, J. M. & Stephenson, M. D. Intense and localized benthic marine pollution around McMurdo Station, Antarctica. Mar. Pollut. Bull. 21, 422–430 (1990).
Google Scholar
Santos, I. R. et al. Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ. Pollut. 140, 304–311 (2006).
Google Scholar
Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33 (2009).
Google Scholar
Corsolini, S. Industrial contaminants in Antarctic biota. J. Chromatogr. A 1216, 598–612 (2009).
Google Scholar
Bargagli, R., Agnorelli, C., Borghini, F. & Monaci, F. Enhanced deposition and bioaccumulation of mercury in antarctic terrestrial ecosystems facing a coastal polynya. Environ. Sci. Technol. 39, 8150–8155 (2005).
Google Scholar
Planchon, F. A. M. et al. Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late-20th century. Earth Planet. Sci. Lett. 200, 207–222 (2002).
Google Scholar
Szopińska, M., Namieśnik, J. & Polkowska, Ż How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. In Reviews of Environmental Contamination and Toxicology Vol. 239 (ed. de Voogt, P.) 79–156 (Springer, 2017).
Bengtson Nash, S. et al. Contaminant profiles of air and soil around Casey station, Antarctica; discerning local and distant contaminant sources. In 21st Society for Environmental Toxicology and Chemistry (SETAC) Europe Annual Meeting Proceedings (2011).
Boutron, C. F. & Patterson, C. C. Relative levels of natural and anthropogenic lead in recent Antarctic snow. J. Geophys. Res. 92, 8454–8464 (1987).
Google Scholar
Dick, A. L. Concentrations and sources of metals in the Antarctic Peninsula aerosol. Geochim. Cosmochim. Acta 55, 1827–1836 (1991).
Google Scholar
de Moreno, J. E. A., Gerpe, M. S., Moreno, V. J. & Vodopivez, C. Heavy metals in Antarctic organisms. Polar Biol. 17, 131–140 (1997).
Google Scholar
Kennicutt, I. M. C. et al. Human contamination of the marine environment-arthur harbor and mcmurdo sound, Antarctica. Environ. Sci. Technol. 29, 1279–1287 (1995).
Google Scholar
Hughes, K. A. & Ashton, G. V. Breaking the ice: The introduction of biofouling organisms to Antarctica on vessel hulls. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 158–164 (2017).
Google Scholar
Aston, S. R. & Thornton, I. Regional geochemical data in relation to seasonal variations in water quality. Sci. Total Environ. 7, 247–260 (1977).
Google Scholar
Norwood, W. P., Borgmann, U. & Dixon, D. G. Saturation models of arsenic, cobalt, chromium and manganese bioaccumulation by Hyalella azteca. Environ. Pollut. 143, 519–528 (2006).
Google Scholar
Jerez, S. et al. Concentration of trace elements in feathers of three Antarctic penguins: Geographical and interspecific differences. Environ. Pollut. 159, 2412–2419 (2011).
Google Scholar
Negri, A., Burns, K., Boyle, S., Brinkman, D. & Webster, N. Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environ. Pollut. 143, 456–467 (2006).
Google Scholar
Trevizani, T. H. et al. Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Mar. Pollut. Bull. 106, 366–371 (2016).
Google Scholar
Trevizani, T. H., Petti, M. A. V., Ribeiro, A. P., Corbisier, T. N. & Figueira, R. C. L. Heavy metal concentrations in the benthic trophic web of Martel Inlet, Admiralty Bay (King George Island, Antarctica). Mar. Pollut. Bull. 130, 198–205 (2018).
Google Scholar
Cipro, C. V. Z., Montone, R. C. & Bustamante, P. Mercury in the ecosystem of Admiralty Bay, King George Island, Antarctica: Occurrence and trophic distribution. Mar. Pollut. Bull. 114, 564–570 (2017).
Google Scholar
de Oliveira, M. F. et al. Evidence of metabolic microevolution of the limpet Nacella concinna to naturally high heavy metal levels in Antarctica. Ecotoxicol. Environ. Saf. 135, 1–9 (2017).
Google Scholar
Torres, M. A. et al. Biochemical biomarkers in algae and marine pollution: A review. Ecotoxicol. Environ. Saf. 71, 1–15 (2008).
Google Scholar
Neff, J. M. Bioaccumulation in Marine Organisms. Effect of Contaminants from Oil Well Produced Water. Organic Geochemistry (Elsevier, 2002).
Wong, P. T. & Trevors, J. T. Chromium toxicity to algae and bacteria. In Chromium in the Natural and Human Environments (eds Nriagu, J. O. & Nieboer, E.) 305–315 (Wiley, 1988).
Community, E. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. Eur. Parliam. L327, 1–82 (2000).
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J. & Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 47, 4967–4983 (2013).
Google Scholar
Pertierra, L. R. et al. Ecosystem services in Antarctica: Global assessment of the current state, future challenges and managing opportunities. Ecosyst. Serv. 49, 101299 (2021).
Google Scholar
Pringle, B. H., Hissong, D. E., Katz, E. L. & Mulawka, S. T. Trace metal accumulation by estuarine mollusks. J. Sanit. Eng. Div. Proc. Amer. Soc. Civ. Eng. 94, 455–475 (1968).
Google Scholar
Amiard, J. C., Amiard-Triquet, C., Berthet, B. & Metayer, C. Comparative study of the patterns of bioaccumulation of essential (Cu, Zn) and non-essential (Cd, Pb) trace metals in various estuarine and coastal organisms. J. Exp. Mar. Bio. Ecol. 106, 73–89 (1987).
Google Scholar
Borgmann, U., Norwood, W. P. & Clarke, C. Accumulation, regulation and toxicity of copper, zinc, lead and mercury in Hyalella azteca. Hydrobiologia 259, 79–89 (1993).
Google Scholar
Windom, H. & Kendall, D. R. Accumulation and biotransformation of mercury in coastal and marine biota. In The Biogeochemistry of Mercury in the Environment (ed. Nriagu, J. O.) 303–323 (Elsevier/North-Holland Biomedical Press, 1979).
Turner, S. J. et al. Are soft-sediment communities stable? An example from a windy harbour. Mar. Ecol. Prog. Ser. 120, 219–230 (1995).
Google Scholar
Caccia, V. G., Millero, F. J. & Palanques, A. The distribution of trace metals in Florida Bay sediments. Mar. Pollut. Bull. 46, 1420–1433 (2003).
Google Scholar
Gibbs, R. J. Transport phases of transition metals in the Amazon and Yukon Rivers. Bull. Geol. Soc. Am. 88, 829–843 (1977).
Google Scholar
Jain, C. K. & Sharma, M. K. Distribution of trace metals in the Hindon River system, India. J. Hydrol. 253, 81–90 (2001).
Google Scholar
Filgueiras, A. V., Lavilla, I. & Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples. J. Environ. Monit. 4, 823–857 (2002).
Google Scholar
Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer, 1984).
Google Scholar
Niimi, A. J. & Kissoon, G. P. Evaluation of the critical body burden concept based on inorganic and organic mercury toxicity to rainbow trout (Oncorhynchus mykiss). Arch. Environ. Contam. Toxicol. 26, 169–178 (1994).
Google Scholar
Landrum, P. F., Lydy, M. J. & Lee, H. Toxicokinetics in aquatic systems: Model comparisons and use in hazard assessment. Environ. Toxicol. Chem. 11, 1709–1725 (1992).
Google Scholar
Wiener, J. G. et al. Monitoring and evaluating trends in methylmercury accumulation in aquatic biota. In Ecosystem Responses to Mercury Contamination: Indicators of Change (eds Harris, R. et al.) 87–122 (CRC Press & SETAC Press, 2007).
Google Scholar
Dunton, K. H. δ15N and δ13C measurements of Antarctic Peninsula fauna: Trophic relationships and assimilation of benthic seaweeds. Am. Zool. 41, 99–112 (2001).
Corbisier, T. N., Petti, M. A. V., Skowronski, R. S. P. & Brito, T. A. S. Trophic relationships in the nearshore zone of Martel Inlet (King George Island, Antarctica): δ13C stable-isotope analysis. Polar Biol. 27, 75–82 (2004).
Google Scholar
Norkko, A. et al. Trophic structure of coastal Antarctic food webs associated with changes in sea ice and food supply. Ecology 88, 2810–2820 (2007).
Google Scholar
Michel, L. N. et al. Increased sea ice cover alters food web structure in East Antarctica. Sci. Rep. 9, 1–11 (2019).
Zenteno, L. et al. Unraveling the multiple bottom-up supplies of an Antarctic nearshore benthic community. Prog. Oceanogr. 174, 55–63 (2019).
Google Scholar
Cardona, L., Lloret-Lloret, E., Moles, J. & Avila, C. Latitudinal changes in the trophic structure of benthic coastal food webs in the Antarctic Peninsula. Mar. Environ. Res. 167, 105290 (2021).
Google Scholar
COMNAP. Antarctic Station Catalogue (COMNAP Secretariat, 2017).
Wiencke, C., Amsler, C. & Clayton, M. Macroalgae. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 66–73 (Scientific Committee on Antarctic Research, 2014).
Danis, B., Griffiths, H. J. & Jangoux, M. Asteroidea. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 200–207 (Scientific Committee on Antarctic Research, 2014).
Schiaparelli, S. & Linse, K. Gastropoda. In Biogeographic Atlas of the Southern Ocean (eds De Broyer, C. et al.) 122–125 (Scientific Committee on Antarctic Research, 2014).
Borrell, A., Tornero, V., Bhattacharjee, D. & Aguilar, A. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh). Sci. Total Environ. 545–546, 414–423 (2016).
Google Scholar
Torres, J., Eira, C., Miquel, J. & Feliu, C. Heavy metal accumulation by intestinal helminths of vertebrates. Recent Adv. Pharm. Sci. II(661), 169–181 (2012).
Vighi, M., Borrell, A. & Aguilar, A. Bone as a surrogate tissue to monitor metals in baleen whales. Chemosphere 171, 81–88 (2017).
Google Scholar
Borrell, A., Aguilar, A., Tornero, V. & Drago, M. Concentrations of mercury in tissues of striped dolphins suggest decline of pollution in Mediterranean open waters. Chemosphere 107, 319–323 (2014).
Google Scholar
Borrell, A., Clusa, M., Aguilar, A. & Drago, M. Use of epidermis for the monitoring of tissular trace elements in Mediterranean striped dolphins (Stenella coeruleoalba). Chemosphere 122, 288–294 (2015).
Google Scholar
Maceda-Veiga, A., Monroy, M., Navarro, E., Viscor, G. & de Sostoa, A. Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci. Total Environ. 449, 9–19 (2013).
Google Scholar
Suda, C. N. K. et al. The biology and ecology of the Antarctic limpet Nacella concinna. Polar Biol. 38, 1949–1969 (2015).
Google Scholar
Škrbić, B., Crossed, D. & Signurišić-Mladenović, N. Distribution of heavy elements in urban and rural surface soils: The Novi Sad city and the surrounding settlements. Serbia. Environ. Monit. Assess. 185, 457–471 (2013).
Google Scholar
Škrbić, B. D., Buljovčić, M., Jovanović, G. & Antić, I. Seasonal, spatial variations and risk assessment of heavy elements in street dust from Novi Sad, Serbia. Chemosphere 205, 452–462 (2018).
Google Scholar
Škrbić, B., Durišić-Mladenović, N. & Cvejanov, J. Principal component analysis of trace elements in Serbian wheat. J. Agric. Food Chem. 53, 2171–2175 (2005).
Google Scholar
Wilde, E. W. & Benemann, J. R. Bioremoval of heavy metals by the use of microalgae. Biotechnol. Adv. 11, 781–812 (1993).
Google Scholar
Farías, S., Arisnabarreta, S. P., Vodopivez, C. & Smichowski, P. Levels of essential and potentially toxic trace metals in Antarctic macro algae. Spectrochim. Acta B 57, 2133–2140 (2002).
Google Scholar
Black, W. A. P. & Mitchell, R. L. Trace elements in the common algae and in sea water. J. Mar. Biol. Assoc. UK 30, 1–10 (1952).
Google Scholar
Lignell, A., Roomans, G. M. & Pedersen, M. Localization of absorbed cadmium in Fucus vesiculosus L. by X-ray microanalysis. Z. Pflanzenphysiol. 105, 103–109 (1982).
Google Scholar
Ragan, M. A., Smidsrød, O. & Larsen, B. Chelation of divalent metal ions by brown algal polyphenols. Mar. Chem. 7, 265–271 (1979).
Google Scholar
Talarico, L. Fine structure and X-ray microanalysis of a red macrophyte cultured under cadmium stress. Environ. Pollut. 120, 813–821 (2002).
Google Scholar
Vasconcelos, M. T. S. D. & Leal, M. F. C. Seasonal variability in the kinetics of Cu, Pb, Cd and Hg accumulation by macroalgae. Mar. Chem. 74, 65–85 (2001).
Google Scholar
Pellegrini, L., Delivopoulos, S. G. & Pellegrini, M. Arsenic-induced ultrastructural changes in the vegetative cells of Cystoseira barbata forma repens Zinova et Kalugina (Fucophyceae, Fucales). Bot. Mar. 33, 229–234 (1990).
Google Scholar
Deheyn, D. D., Gendreau, P., Baldwin, R. J. & Latz, M. I. Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Mar. Environ. Res. 60, 1–33 (2005).
Google Scholar
Exley, C. Silicon in life: A bioinorganic solution to bioorganic essentiality. J. Inorg. Biochem. 69, 139–144 (1998).
Google Scholar
Costa, R. R. et al. Dynamics of an intense diatom bloom in the Northern Antarctic Peninsula, February 2016. Limnol. Oceanogr. 65, 2056–2075 (2020).
Google Scholar
Mendes, C. R. B. et al. Dynamics of phytoplankton communities during late summer around the tip of the Antarctic Peninsula. Deep. Res. I 65, 1–14 (2012).
Google Scholar
Ducklow, H. W. et al. Marine pelagic ecosystems: The West Antarctic Peninsula. Philos. Trans. R. Soc. B. 362, 67–94 (2007).
Google Scholar
Prezelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between Upper Circumpolar Deep Water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).
Google Scholar
Bargagli, R., Monaci, F. & Cateni, D. Marine coastal food web. Mar. Ecol. Prog. Ser. 169, 65–76 (1998).
Google Scholar
Collier, R. & Edmond, J. The trace element geochemistry of marine biogenic particulate matter. Prog. Oceanogr. 13, 113–199 (1984).
Google Scholar
Rubio, C. et al. Metals in edible seaweed. Chemosphere 173, 572–579 (2017).
Google Scholar
Desideri, D. et al. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health A 79, 112–122 (2016).
Google Scholar
Runcie, J. W. & Riddle, M. J. Metal concentrations in macroalgae from East Antarctica. Mar. Pollut. Bull. 49, 1114–1119 (2004).
Google Scholar
Fowler, S. W., Villeneuve, J. P., Wyse, E., Jupp, B. & de Mora, S. Temporal survey of petroleum hydrocarbons, organochlorinated compounds and heavy metals in benthic marine organisms from Dhofar, southern Oman. Mar. Pollut. Bull. 54, 357–367 (2007).
Google Scholar
Curtosi, A., Pelletier, E., Vodopivez, C., St Louis, R. & MacCormack, W. P. Presence and distribution of persistent toxic substances in sediments and marine organisms of Potter Cove, Antarctica. Arch. Environ. Contam. Toxicol. 59, 582–592 (2010).
Google Scholar
Ahn, I. Y., Kim, K. W. & Choi, H. J. A baseline study on metal concentrations in the Antarctic limpet Nacella concinna (Gastropoda: Patellidae) on King George Island: Variations with sex and body parts. Mar. Pollut. Bull. 44, 424–431 (2002).
Google Scholar
Dayton, P. K., Robilliard, G. A., Paine, R. T. & Dayton, L. B. Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecol. Monogr. 44, 105–128 (1974).
Google Scholar
Pearse, J. S. Reproductive periodicities in several contrasting populations of Odontaster validus Koehler, a common Antarctic
asteroid. Antarct. Res. Ser. 5, 39–85 (1965).
Peckham, V. Year-round SCUBA diving in the Antarctic. Polar Rec. 12, 143–146 (1964).
Google Scholar
Smale, D. A., Barnes, D. K. A., Fraser, K. P. P., Mann, P. J. & Brown, M. P. Scavenging in Antarctica: Intense variation between sites and seasons in shallow benthic necrophagy. J. Exp. Mar. Bio. Ecol. 349, 405–417 (2007).
Google Scholar
Mcclintock, J. B. Trophic biology of antarctic shallow-water echinoderms. Mar. Ecol. Prog. Ser. 111, 191–202 (1994).
Google Scholar
Grotti, M. et al. Natural variability and distribution of trace elements in marine organisms from Antarctic coastal environments. Antarct. Sci. 20, 39–51 (2008).
Google Scholar
Papadopoulou, C., Kanias, G. D. & Moraitopoulou-Kassimati, E. Stable elements of radioecological importance in certain echinoderm species. Mar. Pollut. Bull. 7, 143–144 (1976).
Google Scholar
Di Giglio, S. et al. Effects of ocean acidification on acid-base physiology, skeleton properties, and metal contamination in two echinoderms from vent sites in Deception Island, Antarctica. Sci. Total Environ. 765, 142669 (2020).
Google Scholar
Danis, B. et al. Contaminant levels in sediments and asteroids (Asterias rubens L., Echinodermata) from the Belgian coast and Scheldt estuary: Polychlorinated biphenyls and heavy metals. Sci. Total Environ. 333, 149–165 (2004).
Google Scholar
Riva, S. D., Abelmoschi, M. L., Magi, E. & Soggia, F. The utilization of the Antarctic environmental specimen bank (BCAA) in monitoring Cd and Hg in an Antarctic coastal area in Terra Nova Bay (Ross Sea: Northern Victoria Land). Chemosphere 56, 59–69 (2004).
Google Scholar
Cabrita, M. T. et al. Evaluating trace element bioavailability and potential transfer into marine food chains using immobilised diatom model species Phaeodactylum tricornutum, on King George Island, Antartica. Mar. Pollut. Bull. 121, 192–200 (2017).
Google Scholar
Truzzi, C. et al. Separation of micro-phytoplankton from inorganic particulate in Antarctic seawater (Ross Sea) for the determination of Cd, Pb and Cu: Optimization of the analytical methodology. Anal. Methods 7, 5490–5496 (2015).
Google Scholar
Bargagli, R. Trace metals in Antarctic organisms and the development of circumpolar biomonitoring networks. in Reviews of Environmetal Contamination and Toxicology (ed. Ware, G. W.) vol. 171, 53–110 (2001).
Focardi, S., Bargagli, R. & Corsolini, S. Isomer-specific analysis and toxic potential evaluation of polychlorinated biphenyls in Antarctic fish, seabirds and Weddell seals from Terra Nova Bay (Ross Sea). Antarct. Sci. 7, 31–35 (1995).
Google Scholar
Demina, L. L. & Nemirovskaya, I. A. Spatial distribution of microelements in the seston of the White Sea. Oceanology 47, 360–372 (2007).
Google Scholar
Wiencke, C. & Amsler, C. D. Seaweeds and their communities in polar regions. In Seaweed Biology (eds Wiencke, C. & Bischof, K.) 265–291 (Springer, 2012).
Google Scholar
Fairhead, V. A., Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Within-thallus variation in chemical and physical defences in two species of ecologically dominant brown macroalgae from the Antarctic Peninsula. Oceanology 322, 1–12 (2005).
Google Scholar
Amsler, C. D. Algal chemical ecology: Algal Chemical Ecology (Springer, 2008).
Google Scholar
Amsler, C. D., Mcclintock, J. B. & Baker, B. J. Chemical mediation of mutualistic interactions between macroalgae and mesograzers structure unique coastal communities along the western Antarctic Peninsula. J. Phycol. 50, 1–10 (2014).
Google Scholar
Aumack, C. F., Amsler, C. D., McClintock, J. B. & Baker, B. J. Chemically mediated resistance to mesoherbivory in finely branched macroalgae along the western Antarctic Peninsula. Eur. J. Phycol. 45, 19–26 (2010).
Google Scholar
Núñez-Pons, L., Rodríguez-Arias, M., Gómez-Garreta, A., Ribera-Siguán, A. & Avila, C. Feeding deterrency in Antarctic marine organisms: Bioassays with the omnivore amphipod Cheirimedon femoratus. Eur. J. Phycol. 462, 163–174 (2012).
Ahn, I. Y., Chung, K. H. & Choi, H. J. Influence of glacial runoff on baseline metal accumulation in the Antarctic limpet Nacella concinna from King George Island. Mar. Pollut. Bull. 49, 119–127 (2004).
Google Scholar
Burdon-Jones, C., Denton, G. R. W., Jones, G. B. & McPhie, K. A. Regional and seasonal variations of trace metals in tropical phaeophyceae from North Queensland. Mar. Environ. Res. 7, 13–30 (1982).
Google Scholar
Augier, H., Gilles, G., Leal Nascimento, M. & Ramonda, G. Évolution de la contamination de la flore et de la faune marines benthiques de la Baie de Port-Cros de 1976 à 1981. Trav. Sci. Parc Natl. Port-Cros 10, 37–50 (1984).
Chakraborty, S., Bhattacharya, T., Singh, G. & Maity, J. P. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: A biomonitoring approach for pollution assessment. Ecotoxicol. Environ. Saf. 100, 61–68 (2014).
Google Scholar
Pastor, A. et al. Levels of heavy metals in some marine organisms from the western Mediterranean area (Spain). Mar. Pollut. Bull. 28, 50–53 (1994).
Google Scholar
Source: Ecology - nature.com