in

Diurnal evolution of urban tree temperature at a city scale

  • 1.

    Oke, T. R. The heat island of the urban boundary layer: characteristics, causes and effects. In Wind climate in cities (eds Cermak, J. E. et al.) 81–107 (Springer, 1995). https://doi.org/10.1007/978-94-017-3686-2_5.

    Google Scholar 

  • 2.

    Wang, C., Wang, Z. H. & Yang, J. Cooling effect of urban trees on the built environment of contiguous United States. Earth’s Future 6, 1066–1081. https://doi.org/10.1029/2018EF000891 (2018).

    ADS 
    Article 

    Google Scholar 

  • 3.

    Pauleit, S. Urban street tree plantings: identifying the key requirements. Proc. Inst. Civ. Eng. Munic. Eng. 156, 43–50. https://doi.org/10.1680/muen.2003.156.1.43 (2003).

    Article 

    Google Scholar 

  • 4.

    Frantzeskaki, N. et al. Nature-based solutions for urban climate change adaptation: linking science, policy, and practice communities for evidence-based decision-making. BioScience 69, 455–466. https://doi.org/10.1093/biosci/biz042 (2019).

    Article 

    Google Scholar 

  • 5.

    Armson, D., Stringer, P. & Ennos, A. R. The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For. Urban Green. 11, 245–255. https://doi.org/10.1016/j.ufug.2012.05.002 (2012).

    Article 

    Google Scholar 

  • 6.

    Oke, T. R. The micrometeorology of the urban forest. Philos. Trans. R. Soc. Lond. B 324, 335–349. https://doi.org/10.1098/rstb.1989.0051 (1989).

    ADS 
    Article 

    Google Scholar 

  • 7.

    Chow, W. T. & Brazel, A. J. Assessing xeriscaping as a sustainable heat island mitigation approach for a desert city. Build. Environ. 47, 170–181. https://doi.org/10.1016/j.buildenv.2011.07.027 (2012).

    Article 

    Google Scholar 

  • 8.

    Wang, K., Ma, Q., Wang, X. & Wild, M. Urban impacts on mean and trend of surface incident solar radiation. Geophys. Res. Lett. 41, 4664–4668. https://doi.org/10.1002/2014GL060201 (2014).

    ADS 
    Article 

    Google Scholar 

  • 9.

    Bassuk, N. & Whitlow, T. Environmental stress in street trees. Arboricult. J. 12, 195–201. https://doi.org/10.1080/03071375.1988.9746788 (1988).

    Article 

    Google Scholar 

  • 10.

    Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban For. Urban Green. 2, 139–147. https://doi.org/10.1078/1618-8667-00030 (2004).

    Article 

    Google Scholar 

  • 11.

    Monteith, J. . & Unsworth, M. . Principles of Environmental Physics: Plants, Animals, and the Atmosphere 4th edn. (Elsevier Ltd., 2013).

    Google Scholar 

  • 12.

    Simon, H. et al. Modeling transpiration and leaf temperature of urban trees—a case study evaluating the microclimate model ENVI-met against measurement data. Landsc. Urban Plan. 174, 33–40. https://doi.org/10.1016/j.landurbplan.2018.03.003 (2018).

    Article 

    Google Scholar 

  • 13.

    González-Dugo, M. P., Moran, M. S., Mateos, L. & Bryant, R. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 24, 1–8. https://doi.org/10.1007/s00271-005-0023-7 (2006).

    Article 

    Google Scholar 

  • 14.

    Han, M., Zhang, H., DeJonge, K. C., Comas, L. H. & Trout, T. J. Estimating maize water stress by standard deviation of canopy temperature in thermal imagery. Agricult. Water Manag. 177, 400–409. https://doi.org/10.1016/j.agwat.2016.08.031 (2016).

    Article 

    Google Scholar 

  • 15.

    Hou, M., Tian, F., Zhang, T. & Huang, M. Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery. Agricult. Water Manag. 222, 182–192. https://doi.org/10.1016/j.agwat.2019.06.005 (2019).

    Article 

    Google Scholar 

  • 16.

    Heilman, J. L., Brittin, C. L. & Zajicek, J. M. Water use by shrubs as affected by energy exchange with building walls. Agricult. For. Meteorol. 48, 345–357. https://doi.org/10.1016/0168-1923(89)90078-6 (1989).

    ADS 
    Article 

    Google Scholar 

  • 17.

    Perini, K. & Magliocco, A. Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban For. Urban Green. 13, 495–506. https://doi.org/10.1016/j.ufug.2014.03.003 (2014).

    Article 

    Google Scholar 

  • 18.

    Soer, G. J. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Environ. 9, 27–45. https://doi.org/10.1016/0034-4257(80)90045-0 (1980).

    ADS 
    Article 

    Google Scholar 

  • 19.

    Spronken-Smith, R. A. & Oke, T. R. The thermal regime of urban parks in two cities with different summer climates. Int. J. Remote Sens. 19, 2085–2104. https://doi.org/10.1080/014311698214884 (1998).

    ADS 
    Article 

    Google Scholar 

  • 20.

    Rahman, M. A. et al. Traits of trees for cooling urban heat islands: a meta-analysis. Build. Environ. 170, 106606. https://doi.org/10.1016/j.buildenv.2019.106606 (2020).

    Article 

    Google Scholar 

  • 21.

    Leuzinger, S., Vogt, R. & Körner, C. Tree surface temperature in an urban environment. Agricult. For. Meteorol. 150, 56–62. https://doi.org/10.1016/j.agrformet.2009.08.006 (2010).

    ADS 
    Article 

    Google Scholar 

  • 22.

    Meier, F. & Scherer, D. Spatial and temporal variability of urban tree canopy temperature during summer 2010 in Berlin, Germany. Theor. Appl. Climatol. 110, 373–384. https://doi.org/10.1007/s00704-012-0631-0 (2012).

    ADS 
    Article 

    Google Scholar 

  • 23.

    Ballester, C., Jiménez-Bello, M. A., Castel, J. R. & Intrigliolo, D. S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 168, 120–129. https://doi.org/10.1016/j.agrformet.2012.08.005 (2013).

    ADS 
    Article 

    Google Scholar 

  • 24.

    Jones, H. G. Application of thermal imaging and infrared sensing in plant physiology and ecophysiology. Adv. Botan. Res. 41, 107–163. https://doi.org/10.1016/s0065-2296(04)41003-9 (2004).

    ADS 
    Article 

    Google Scholar 

  • 25.

    Givoni, B. Impact of planted areas on urban environmental quality: a review. Atmos. Environ. Part B Urban Atmos. 25, 289–299. https://doi.org/10.1016/0957-1272(91)90001-U (1991).

    ADS 
    Article 

    Google Scholar 

  • 26.

    Kalnay, E. & Cai, M. Impact of urbanization and land-use change on climate. Nature 423, 528–531. https://doi.org/10.1038/nature01675 (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    A. Coutts, A. et al. Impacts of water sensitive urban design solutions on human thermal comfort. p. 20 (online link: https://watersensitivecities.org.au/wp-content/uploads/2016/07/TMR_B3-1_WSUD_thermal_comfort_no2.pdf) (2014).

  • 28.

    Coutts1, A. et al. The Impacts of WSUD Solutions on Human Thermal Comfort Green Cities and Micro-climate-B3.1-2-2014 Contributing Authors. Tech. Rep. (1968).

  • 29.

    Gunawardena, K. R., Wells, M. J. & Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 584–585, 1040–1055. https://doi.org/10.1016/j.scitotenv.2017.01.158 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Völker, S., Baumeister, H., Classen, T., Hornberg, C. & Kistemann, T. Evidence for the temperature-mitigating capacity of urban blue space—a health geographic perspective. Erdkunde 67, 355–371. https://doi.org/10.3112/erdkunde.2013.04.05 (2013).

    Article 

    Google Scholar 

  • 31.

    Hu, L. & Li, Q. Greenspace, bluespace, and their interactive influence on urban thermal environments. Environ. Res. Lett. 15, 034041. https://doi.org/10.1088/1748-9326/ab6c30 (2020).

    ADS 
    Article 

    Google Scholar 

  • 32.

    Theeuwes, N. E., Solcerová, A. & Steeneveld, G. J. Modeling the influence of open water surfaces on the summertime temperature and thermal comfort in the city. J. Geophys. Res. Atmos. 118, 8881–8896. https://doi.org/10.1002/jgrd.50704 (2013).

    ADS 
    Article 

    Google Scholar 

  • 33.

    Ziter, C. D., Pedersen, E. J., Kucharik, C. J. & Turner, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proc. Natl. Acad. Sci. U. S. A. 116, 7575–7580. https://doi.org/10.1073/pnas.1817561116 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Johnson, S., Ross, Z., Kheirbek, I. & Ito, K. Characterization of intra-urban spatial variation in observed summer ambient temperature from the New York City Community Air Survey. Urban Clim. 31, 100583. https://doi.org/10.1016/j.uclim.2020.100583 (2020).

    Article 

    Google Scholar 

  • 35.

    Wetherley, E. B., McFadden, J. P. & Roberts, D. A. Megacity-scale analysis of urban vegetation temperatures. Remote Sens. Environ. 213, 18–33. https://doi.org/10.1016/j.rse.2018.04.051 (2018).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Zhou, W., Wang, J. & Cadenasso, M. L. Effects of the spatial configuration of trees on urban heat mitigation: a comparative study. Remote Sens. Environ. 195, 1–12. https://doi.org/10.1016/j.rse.2017.03.043 (2017).

    ADS 
    Article 

    Google Scholar 

  • 37.

    Weng, Q., Lu, D. & Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483. https://doi.org/10.1016/j.rse.2003.11.005 (2004).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Hulley, G., Hook, S., Fisher, J. & Lee, C. ECOSTRESS, A NASA Earth-Ventures Instrument for studying links between the water cycle and plant health over the diurnal cycle. In International Geoscience and Remote Sensing Symposium (IGARSS), vol. 2017-July, 5494–5496 (Institute of Electrical and Electronics Engineers Inc., 2017). https://doi.org/10.1109/IGARSS.2017.8128248.

  • 39.

    Wood, S. N. Low-rank scale-invariant tensor product smooths for generalized additive mixed models. Biometrics 62, 1025–1036. https://doi.org/10.1111/j.1541-0420.2006.00574.x (2006).

    MathSciNet 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • 40.

    Duan, S.-B. et al. Estimation of diurnal cycle of land surface temperature at high temporal and spatial resolution from clear-sky MODIS data. Remote Sens. 6, 3247–3262. https://doi.org/10.3390/rs6043247 (2014).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Hu, L., Sun, Y., Collins, G. & Fu, P. Improved estimates of monthly land surface temperature from MODIS using a diurnal temperature cycle (DTC) model. ISPRS J. Photogramm. Remote Sens. 168, 131–140. https://doi.org/10.1016/j.isprsjprs.2020.08.007 (2020).

    ADS 
    Article 

    Google Scholar 

  • 42.

    New York City Department of Information Technology and Telecommunications (NYC DoITT). Land Cover Raster Data 6-inch Resolution (2017).

  • 43.

    New York City Department of Information Technology and Telecommunications (NYC DoITT). New York City Building Footprint (2017).

  • 44.

    Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (CRC Press, 2017).

    Book 

    Google Scholar 

  • 45.

    Cârlan, I., Mihai, B. A., Nistor, C. & Große-Stoltenberg, A. Identifying urban vegetation stress factors based on open access remote sensing imagery and field observations. Ecol. Inform. 55, 101032. https://doi.org/10.1016/j.ecoinf.2019.101032 (2020).

    Article 

    Google Scholar 

  • 46.

    Cregg, B. & Dix, M. E. Tree moisture stress and insect damage in urban areas in relation to heat island effects. J. Arboricult. 27, 8–17 (2001).

    Google Scholar 

  • 47.

    Novem, D. & Falxa, N. United States Department of Agriculture The Urban Forest of New York City. Tech. Rep. https://doi.org/10.2737/NRS-RB-117 (2018).

  • 48.

    Shaker, R. R., Altman, Y., Deng, C., Vaz, E. & Forsythe, K. W. Investigating urban heat island through spatial analysis of New York City streetscapes. J. Clean. Prod. 233, 972–992. https://doi.org/10.1016/j.jclepro.2019.05.389 (2019).

    Article 

    Google Scholar 

  • 49.

    Meir, T., Orton, P. M., Pullen, J., Holt, T. & Thompson, W. T. Forecasting the New York City urban heat island and sea breeze during extreme heat events. Weather Forecast. 28, 1460–1477. https://doi.org/10.1175/WAF-D-13-00012.1 (2013).

    ADS 
    Article 

    Google Scholar 

  • 50.

    Ramamurthy, P., González, J., Ortiz, L., Arend, M. & Moshary, F. Impact of heatwave on a megacity: an observational analysis of New York City during July 2016. Environ. Res. Lett. 12, 054011. https://doi.org/10.1088/1748-9326/aa6e59 (2017).

    ADS 
    Article 

    Google Scholar 

  • 51.

    Gedzelman, S. D. et al. Mesoscale aspects of the Urban Heat Island around New York City. Theor. Appl. Climatol. 75, 29–42. https://doi.org/10.1007/s00704-002-0724-2 (2003).

    ADS 
    Article 

    Google Scholar 

  • 52.

    Cavender, N. & Donnelly, G. Intersecting urban forestry and botanical gardens to address big challenges for healthier trees, people, and cities. Plants People Planet 1, 315–322. https://doi.org/10.1002/ppp3.38 (2019).

    Article 

    Google Scholar 

  • 53.

    Marias, D. E., Meinzer, F. C. & Still, C. Impacts of leaf age and heat stress duration on photosynthetic gas exchange and foliar nonstructural carbohydrates in Coffea arabica. Ecol. Evol. 7, 1297–1310. https://doi.org/10.1002/ece3.2681 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Brune, M. Urban trees under climate change. Potential impacts of dry spells and heat waves in three Germany regions in the 1950s. Report 20, Climate Service Center Germany, Hamburg 123 (2016).

  • 55.

    Jim, C. Y. Green-space preservation and allocation for sustainable greening of compact cities. Cities 21, 311–320. https://doi.org/10.1016/j.cities.2004.04.004 (2004).

    Article 

    Google Scholar 

  • 56.

    Santamouris, M. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 103, 682–703. https://doi.org/10.1016/j.solener.2012.07.003 (2014).

    ADS 
    Article 

    Google Scholar 

  • 57.

    Drescher, M. Urban heating and canopy cover need to be considered as matters of environmental justice. Proc. Natl. Acad. Sci. U. S. A. 116, 26153–26154. https://doi.org/10.1073/pnas.1917213116 (2019).

    ADS 
    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Roloff, A. . Bäume in der Stadt (Ulmer, E, 2013).

    Google Scholar 

  • 59.

    Bruse, M. ENVI-met 3.0: Updated Model Overview. Tech. Rep. (2004).

  • 60.

    US Census Bureau. State and County Quick Facts https://www.census.gov/quickfacts/fact/table/US/PST045219 (2019).

  • 61.

    Shorris, A. Cool Neighborhoods NYC: A Comprehensive Approach to Keep Communities Safe in Extreme Heat. Tech. Rep.

  • 62.

    Hulley, G. ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) Mission Level 2 Product Specification Document. Tech. Rep. (2018).

  • 63.

    Stark, P. & Parker, R. Bounded-Variable Least-squares: An Algorithm and Applications. Tech. Rep. 394, (1995).


  • Source: Ecology - nature.com

    Ice melts on US-Sudan relations, providing new opportunities

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought