in

Diverse phylogenetic neighborhoods enhance community resistance to drought in experimental assemblages

  • 1.

    Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton, 2001).

    Google Scholar 

  • 2.

    Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).

    PubMed 

    Google Scholar 

  • 3.

    Diamond, J. M. Assembly of species communities. In Ecology and Evolution of Communities (eds. Cody, M. L. & Diamond, J. M.) 342–444 (Harvard University Press, 1975).

  • 4.

    Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).

    Google Scholar 

  • 5.

    Götzenberger, L. et al. Ecological assembly rules in plant communities––Approaches, patterns and prospects. Biol. Rev. Camb. Philos. Soc. 87, 111–127 (2012).

    PubMed 

    Google Scholar 

  • 6.

    HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).

    Google Scholar 

  • 7.

    Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait–based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).

    PubMed 

    Google Scholar 

  • 8.

    Lortie, C. J. et al. Rethinking plant community theory. Oikos 107, 433–438 (2004).

    Google Scholar 

  • 9.

    Vellend, M. Conceptual synthesis in community Ecology. Q. Rev. Biol. 85, 183–206 (2010).

    PubMed 

    Google Scholar 

  • 10.

    Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).

    Google Scholar 

  • 11.

    Escudero, A. & Valladares, F. Trait-based plant Ecology: Moving towards a unifying species coexistence theory: Features of the special section. Oecologia 180, 919–922 (2016).

    ADS 
    PubMed 

    Google Scholar 

  • 12.

    Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS One 7, 1–9 (2012).

    Google Scholar 

  • 13.

    Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 187–191 (1994).

    Google Scholar 

  • 14.

    Kraft, N. J., Godoy, O. & Levine, J. M. PNAS. Proc. Natl. Acad. Sci. 112, 797–802 (2015).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 15.

    Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).

    Google Scholar 

  • 16.

    Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).

    Google Scholar 

  • 17.

    Pausas, J. G. & Verdú, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625 (2010).

    Google Scholar 

  • 18.

    Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).

    Google Scholar 

  • 19.

    Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283 (2007).

    PubMed 

    Google Scholar 

  • 20.

    Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).

    PubMed 

    Google Scholar 

  • 21.

    Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community Ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).

    PubMed 

    Google Scholar 

  • 22.

    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).

    Google Scholar 

  • 23.

    Godoy, O., Kraft, N. J. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).

    PubMed 

    Google Scholar 

  • 24.

    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).

    PubMed 

    Google Scholar 

  • 25.

    de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).

    ADS 

    Google Scholar 

  • 26.

    Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4, e5695 (2009).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).

    PubMed 

    Google Scholar 

  • 28.

    Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).

    Google Scholar 

  • 29.

    Huang, M., Liu, X., Cadotte, M. W. & Zhou, S. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129, 1185–1195 (2020).

    Google Scholar 

  • 30.

    Staab, M. et al. Tree phylogenetic diversity structures multitrophic communities. Funct. Ecol. 35, 521–534 (2021).

    Google Scholar 

  • 31.

    Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Kembel, S. W. Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).

    PubMed 

    Google Scholar 

  • 33.

    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).

    PubMed 

    Google Scholar 

  • 34.

    Luzuriaga, A. L., Ferrandis, P., Flores, J. & Escudero, A. Effect of aridity on species assembly in gypsum drylands: A response mediated by the soil affinity of species. AoB Plants 12, plaa020 (2020).

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 35.

    Valiente-Banuet, A. & Verdu, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).

    PubMed 

    Google Scholar 

  • 36.

    Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).

    PubMed 
    CAS 

    Google Scholar 

  • 37.

    Slingsby, J. A. & Verboom, G. A. Phylogenetic relatedness limits co–occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am. Nat. 168, 14–27 (2006).

    PubMed 

    Google Scholar 

  • 38.

    Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. Does phylogenetic relatedness influence the strength of competition among vascular plants?. Perspect. Plant. Ecol. Evol. Syst. 10, 41–50 (2008).

    Google Scholar 

  • 39.

    Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).

    PubMed 
    CAS 

    Google Scholar 

  • 40.

    Feng, Y., Fouqueray, T. D. & van Kleunen, M. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).

    Google Scholar 

  • 41.

    Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).

    Google Scholar 

  • 42.

    Peralta, A. M., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).

    CAS 

    Google Scholar 

  • 43.

    Luzuriaga, A. L., Sánchez, A. M., López-Angulo, J. & Escudero, A. Habitat fragmentation determines diversity of annual plant communities at landscape and fine spatial scales. Basic. Appl. Ecol. 29, 12–19 (2018).

    Google Scholar 

  • 44.

    Luzuriaga, A. L., González, J. M. & Escudero, A. Annual plant community assembly in edaphically heterogeneous environments. J. Veg. Sci. 26, 866–875 (2015).

    Google Scholar 

  • 45.

    Pistón, N., Armas, C., Schöb, C., Macek, P. & Pugnaire, F. I. Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos 124, 1354–1359 (2015).

    Google Scholar 

  • 46.

    Matías, L., Godoy, O., Gómez-Aparicio, L. & Pérez-Ramos, I. M. An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J. Ecol. 106, 826–837 (2018).

    Google Scholar 

  • 47.

    Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).

    ADS 

    Google Scholar 

  • 48.

    Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).

    ADS 
    PubMed 

    Google Scholar 

  • 49.

    Hart, S. P. & Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. Ecology 94, 2719–2731 (2013).

    PubMed 

    Google Scholar 

  • 50.

    Armas, C. & Pugnaire, F. I. Belowground zone of influence in a tussock grass species. Acta Oecol. 37, 284–289 (2011).

    ADS 

    Google Scholar 

  • 51.

    Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).

    PubMed 

    Google Scholar 

  • 52.

    Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. PNAS 103, 6230–6235 (2006).

    ADS 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar 

  • 53.

    Lamb, E. G. & Cahill, J. F. Jr. When competition does not matter: Grassland diversity and community composition. Am. Nat. 17, 777–787 (2008).

    Google Scholar 

  • 54.

    Yan, B. G. et al. Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J. Veg. Sci. 23, 698–708 (2012).

    Google Scholar 

  • 55.

    Helmus, M. R., Savage, K., Diebel, M. W., Maxted, J. T. & Ives, A. R. Separating the determinants of phylogenetic community structure. Ecol. Lett. 10, 917–925 (2007).

    PubMed 

    Google Scholar 

  • 56.

    Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).

    PubMed 

    Google Scholar 

  • 57.

    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).

    Google Scholar 

  • 58.

    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and Ecology. Bioinformatics 26, 1463–1464 (2010).

    PubMed 
    CAS 

    Google Scholar 

  • 59.

    Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).

    Google Scholar 

  • 60.

    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).

    Google Scholar 

  • 61.

    Pacala, S. W. & Tilman, D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am. Nat. 143, 222–257 (1994).

    Google Scholar 

  • 62.

    Holt, R. D. Theoretical perspectives on resource pulses. Ecology 89, 671–681 (2008).

    PubMed 

    Google Scholar 

  • 63.

    Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).

    ADS 
    PubMed 
    CAS 

    Google Scholar 

  • 64.

    Verdú, M., Rey, P. J., Alcantara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).

    Google Scholar 

  • 65.

    Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).

    Google Scholar 

  • 66.

    Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).

    Google Scholar 

  • 67.

    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).

    Google Scholar 

  • 68.

    Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).

    PubMed 

    Google Scholar 

  • 69.

    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).

    PubMed 

    Google Scholar 

  • 70.

    D’Antonio, C. M. & Mahall, B. E. Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. Am. J. Bot. 78, 885–894 (1991).

    Google Scholar 

  • 71.

    Jumpponen, A., Högberg, P., Huss-Danell, K. & Mulder, C. P. H. Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct. Ecol. 16, 454–461 (2002).

    Google Scholar 

  • 72.

    Miller, A. E., Bowman, W. D. & Suding, K. N. Plant uptake of inorganic and organic nitrogen: Neighbor identity matters. Ecology 88, 1832–1840 (2007).

    PubMed 

    Google Scholar 

  • 73.

    de Kroon, H. & Mommer, L. Root foraging theory put to the test. Trends Ecol. Evol. 21, 113–116 (2006).

    PubMed 

    Google Scholar 

  • 74.

    Maynard, D. S., Serván, C. A., Capitán, J. A. & Allesina, S. Phenotypic variability promotes diversity and stability in competitive communities. Ecol. Lett. 22, 1776–1786 (2019).

    PubMed 

    Google Scholar 

  • 75.

    Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).

    PubMed 

    Google Scholar 

  • 76.

    García-Camacho, R., Metz, J., Bilton, M. C. & Tielbörger, K. Phylogenetic structure of annual plant communities along an aridity gradient. Interacting effects of habitat filtering and shifting plant–plant interactions. Isr. J. Plant. Sci. 64, 122–134 (2017).

    Google Scholar 

  • 77.

    Vellend, M. The Theory of Ecological Communities (Princeton University Press, 2016).

    Google Scholar 

  • 78.

    Madrigal-González, J., Cano-Barbacil, C., Kigel, J., Ferrandis, P. & Luzuriaga, A. L. Nurse plants promote taxonomic and functional diversity in a semi-arid Mediterranean annual plant community. J. Veg. Sci. 31, 658–666 (2020).

    Google Scholar 

  • 79.

    McPeek, M. A. Evolutionary Community Ecology (Princeton University, 2017).

    Google Scholar 

  • 80.

    terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).

    Google Scholar 

  • 81.

    Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).

    Google Scholar 

  • 82.

    Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).

    PubMed 

    Google Scholar 

  • 83.

    Chacón-Labella, J., de la Cruz, M. & Escudero, A. Beyond the classical nurse species effect: Diversity assembly in a Mediterranean semi-arid dwarf shrubland. J. Veg. Sci. 27, 80–88 (2016).

    Google Scholar 

  • 84.

    IPCC 2014: Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds. Core Writing Team, Pachauri, R. K. & Meyer, L. A.) 151 (IPCC, 2014).


  • Source: Ecology - nature.com

    At UN climate change conference, trying to “keep 1.5 alive”

    Direct and indirect effects of roads on space use by jaguars in Brazil