Hubbel, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton, 2001).
Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J. & Etienne, R. S. The case for ecological neutral theory. Trends Ecol. Evol. 27, 203–208 (2012).
Google Scholar
Diamond, J. M. Assembly of species communities. In Ecology and Evolution of Communities (eds. Cody, M. L. & Diamond, J. M.) 342–444 (Harvard University Press, 1975).
Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (University of Chicago Press, 2003).
Götzenberger, L. et al. Ecological assembly rules in plant communities––Approaches, patterns and prospects. Biol. Rev. Camb. Philos. Soc. 87, 111–127 (2012).
Google Scholar
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).
Adler, P. B., Fajardo, A., Kleinhesselink, A. R. & Kraft, N. J. B. Trait–based tests of coexistence mechanisms. Ecol. Lett. 16, 1294–1306 (2013).
Google Scholar
Lortie, C. J. et al. Rethinking plant community theory. Oikos 107, 433–438 (2004).
Vellend, M. Conceptual synthesis in community Ecology. Q. Rev. Biol. 85, 183–206 (2010).
Google Scholar
Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).
Escudero, A. & Valladares, F. Trait-based plant Ecology: Moving towards a unifying species coexistence theory: Features of the special section. Oecologia 180, 919–922 (2016).
Google Scholar
Luzuriaga, A. L., Sánchez, A. M., Maestre, F. T. & Escudero, A. Assemblage of a semi-arid annual plant community: Abiotic and biotic filters act hierarchically. PLoS One 7, 1–9 (2012).
Bertness, M. D. & Callaway, R. Positive interactions in communities. Trends Ecol. Evol. 9, 187–191 (1994).
Kraft, N. J., Godoy, O. & Levine, J. M. PNAS. Proc. Natl. Acad. Sci. 112, 797–802 (2015).
Google Scholar
Shipley, B. From Plant Traits to Vegetation Structure: Chance and Selection in the Assembly of Ecological Communities (Cambridge University Press, 2010).
Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).
Pausas, J. G. & Verdú, M. The jungle of methods for evaluating phenotypic and phylogenetic structure of communities. Bioscience 60, 614–625 (2010).
Gerhold, P., Cahill, J. F., Winter, M., Bartish, I. V. & Prinzing, A. Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. 29, 600–614 (2015).
Kraft, N. J. B., Cornwell, W. K., Webb, C. O. & Ackerly, D. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283 (2007).
Google Scholar
Emerson, B. C. & Gillespie, R. G. Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol. Evol. 23, 619–630 (2008).
Google Scholar
Cavender-Bares, J., Kozak, K. H., Fine, P. V. & Kembel, S. W. The merging of community Ecology and phylogenetic biology. Ecol. Lett. 12, 693–715 (2009).
Google Scholar
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Godoy, O., Kraft, N. J. & Levine, J. M. Phylogenetic relatedness and the determinants of competitive outcomes. Ecol. Lett. 17, 836–844 (2014).
Google Scholar
Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).
Google Scholar
de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).
Google Scholar
Cadotte, M. W., Cavender-Bares, J., Tilman, D. & Oakley, T. H. Using phylogenetic, functional and trait diversity to understand patterns of plant community productivity. PLoS One 4, e5695 (2009).
Google Scholar
Srivastava, D. S., Cadotte, M. W., MacDonald, A. A. M., Marushia, R. G. & Mirotchnick, N. Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. 15, 637–648 (2012).
Google Scholar
Cadotte, M. W., Dinnage, R. & Tilman, D. Phylogenetic diversity promotes ecosystem stability. Ecology 93, S223–S233 (2012).
Huang, M., Liu, X., Cadotte, M. W. & Zhou, S. Functional and phylogenetic diversity explain different components of diversity effects on biomass production. Oikos 129, 1185–1195 (2020).
Staab, M. et al. Tree phylogenetic diversity structures multitrophic communities. Funct. Ecol. 35, 521–534 (2021).
Mazel, F. et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 9, 2888 (2018).
Google Scholar
Kembel, S. W. Disentangling niche and neutral influences on community assembly: Assessing the performance of community phylogenetic structure tests. Ecol. Lett. 12, 949–960 (2009).
Google Scholar
Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).
Google Scholar
Luzuriaga, A. L., Ferrandis, P., Flores, J. & Escudero, A. Effect of aridity on species assembly in gypsum drylands: A response mediated by the soil affinity of species. AoB Plants 12, plaa020 (2020).
Google Scholar
Valiente-Banuet, A. & Verdu, M. Facilitation can increase the phylogenetic diversity of plant communities. Ecol. Lett. 10, 1029–1036 (2007).
Google Scholar
Butterfield, B. J. et al. Alpine cushion plants inhibit the loss of phylogenetic diversity in severe environments. Ecol. Lett. 16, 478–486 (2013).
Google Scholar
Slingsby, J. A. & Verboom, G. A. Phylogenetic relatedness limits co–occurrence at fine spatial scales: Evidence from the schoenoid sedges (Cyperaceae: Schoeneae) of the Cape Floristic Region, South Africa. Am. Nat. 168, 14–27 (2006).
Google Scholar
Cahill, J. F., Kembel, S. W., Lamb, E. G. & Keddy, P. A. Does phylogenetic relatedness influence the strength of competition among vascular plants?. Perspect. Plant. Ecol. Evol. Syst. 10, 41–50 (2008).
Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian oak communities. Am. Nat. 163, 823–843 (2004).
Google Scholar
Feng, Y., Fouqueray, T. D. & van Kleunen, M. Linking Darwin’s naturalisation hypothesis and Elton’s diversity–invasibility hypothesis in experimental grassland communities. J. Ecol. 107, 794–805 (2019).
Galland, T. et al. Colonization resistance and establishment success along gradients of functional and phylogenetic diversity in experimental plant communities. J. Ecol. 107, 2090–2104 (2019).
Peralta, A. M., Sánchez, A. M., Luzuriaga, A. L., de Bello, F. & Escudero, A. Evidence of functional species sorting by rainfall and biotic interactions: A community monolith experimental approach. J. Ecol. 107, 2772–2788 (2019).
Google Scholar
Luzuriaga, A. L., Sánchez, A. M., López-Angulo, J. & Escudero, A. Habitat fragmentation determines diversity of annual plant communities at landscape and fine spatial scales. Basic. Appl. Ecol. 29, 12–19 (2018).
Luzuriaga, A. L., González, J. M. & Escudero, A. Annual plant community assembly in edaphically heterogeneous environments. J. Veg. Sci. 26, 866–875 (2015).
Pistón, N., Armas, C., Schöb, C., Macek, P. & Pugnaire, F. I. Phylogenetic distance among beneficiary species in a cushion plant species explains interaction outcome. Oikos 124, 1354–1359 (2015).
Matías, L., Godoy, O., Gómez-Aparicio, L. & Pérez-Ramos, I. M. An experimental extreme drought reduces the likelihood of species to coexist despite increasing intransitivity in competitive networks. J. Ecol. 106, 826–837 (2018).
Miranda, J. D., Armas, C., Padilla, F. M. & Pugnaire, F. I. Climatic change and rainfall patterns: Effects on semi-arid plant communities of the Iberian Southeast. J. Arid. Environ. 75, 1302–1309 (2011).
Google Scholar
Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).
Google Scholar
Hart, S. P. & Marshall, D. J. Environmental stress, facilitation, competition, and coexistence. Ecology 94, 2719–2731 (2013).
Google Scholar
Armas, C. & Pugnaire, F. I. Belowground zone of influence in a tussock grass species. Acta Oecol. 37, 284–289 (2011).
Google Scholar
Adler, P. B., HilleRisLambers, J. & Levine, J. M. A niche for neutrality. Ecol. Lett. 10, 95–104 (2007).
Google Scholar
Scheffer, M. & van Nes, E. H. Self-organized similarity, the evolutionary emergence of groups of similar species. PNAS 103, 6230–6235 (2006).
Google Scholar
Lamb, E. G. & Cahill, J. F. Jr. When competition does not matter: Grassland diversity and community composition. Am. Nat. 17, 777–787 (2008).
Yan, B. G. et al. Trait assembly of woody plants in communities across sub-alpine gradients: identifying the role of limiting similarity. J. Veg. Sci. 23, 698–708 (2012).
Helmus, M. R., Savage, K., Diebel, M. W., Maxted, J. T. & Ives, A. R. Separating the determinants of phylogenetic community structure. Ecol. Lett. 10, 917–925 (2007).
Google Scholar
Tucker, C. M. et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 92, 698–715 (2017).
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
Kembel, S. W. et al. Picante: R tools for integrating phylogenies and Ecology. Bioinformatics 26, 1463–1464 (2010).
Google Scholar
Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).
Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).
Pacala, S. W. & Tilman, D. Limiting similarity in mechanistic and spatial models of plant competition in heterogeneous environments. Am. Nat. 143, 222–257 (1994).
Holt, R. D. Theoretical perspectives on resource pulses. Ecology 89, 671–681 (2008).
Google Scholar
Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).
Google Scholar
Verdú, M., Rey, P. J., Alcantara, J. M., Siles, G. & Valiente-Banuet, A. Phylogenetic signatures of facilitation and competition in successional communities. J. Ecol. 97, 1171–1180 (2009).
Valiente-Banuet, A. & Verdu, M. Plant facilitation and phylogenetics. Annu. Rev. Ecol. Evol. Syst. 44, 347–366 (2013).
Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).
Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Pfennig, D. W. & Murphy, P. J. How fluctuating competition and phenotypic plasticity mediate species divergence. Evolution 56, 1217–1228 (2002).
Google Scholar
Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: Plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).
Google Scholar
D’Antonio, C. M. & Mahall, B. E. Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. Am. J. Bot. 78, 885–894 (1991).
Jumpponen, A., Högberg, P., Huss-Danell, K. & Mulder, C. P. H. Interspecific and spatial differences in nitrogen uptake in monocultures and two-species mixtures in north European grasslands. Funct. Ecol. 16, 454–461 (2002).
Miller, A. E., Bowman, W. D. & Suding, K. N. Plant uptake of inorganic and organic nitrogen: Neighbor identity matters. Ecology 88, 1832–1840 (2007).
Google Scholar
de Kroon, H. & Mommer, L. Root foraging theory put to the test. Trends Ecol. Evol. 21, 113–116 (2006).
Google Scholar
Maynard, D. S., Serván, C. A., Capitán, J. A. & Allesina, S. Phenotypic variability promotes diversity and stability in competitive communities. Ecol. Lett. 22, 1776–1786 (2019).
Google Scholar
Violle, C., Nemergut, D. R., Pu, Z. & Jiang, L. Phylogenetic limiting similarity and competitive exclusion. Ecol. Lett. 14, 782–787 (2011).
Google Scholar
García-Camacho, R., Metz, J., Bilton, M. C. & Tielbörger, K. Phylogenetic structure of annual plant communities along an aridity gradient. Interacting effects of habitat filtering and shifting plant–plant interactions. Isr. J. Plant. Sci. 64, 122–134 (2017).
Vellend, M. The Theory of Ecological Communities (Princeton University Press, 2016).
Madrigal-González, J., Cano-Barbacil, C., Kigel, J., Ferrandis, P. & Luzuriaga, A. L. Nurse plants promote taxonomic and functional diversity in a semi-arid Mediterranean annual plant community. J. Veg. Sci. 31, 658–666 (2020).
McPeek, M. A. Evolutionary Community Ecology (Princeton University, 2017).
terHorst, C. P. et al. Evolution in a community context: Trait responses to multiple species interactions. Am. Nat. 191, 368–380 (2018).
Dayan, T. & Simberloff, D. Ecological and community-wide character displacement: The next generation. Ecol. Lett. 8, 875–894 (2005).
Calatayud, J. et al. Positive associations among rare species and their persistence in ecological assemblages. Nat. Ecol. Evol. 4, 40–45 (2020).
Google Scholar
Chacón-Labella, J., de la Cruz, M. & Escudero, A. Beyond the classical nurse species effect: Diversity assembly in a Mediterranean semi-arid dwarf shrubland. J. Veg. Sci. 27, 80–88 (2016).
IPCC 2014: Climate Change 2014: Synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change (eds. Core Writing Team, Pachauri, R. K. & Meyer, L. A.) 151 (IPCC, 2014).
Source: Ecology - nature.com