in

Diversity and distribution of viruses inhabiting the deepest ocean on Earth

  • 1.

    Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Zimmerman AE, Howard-Varona C, Needham DM, John SG, Worden AZ, Sullivan MB, et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat Rev Microbiol. 2020;18:21–34.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Roux S, Brum JR, Dutilh BE, Sunagawa S, Duhaime MB, Loy A, et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 2016;537:689–93.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 2019;177:1109–23.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 6.

    Coutinho FH, Silveira CB, Gregoracci GB, Thompson CC, Edwards RA, Brussaard CPD, et al. Marine viruses discovered via metagenomics shed light on viral strategies throughout the oceans. Nat Commun. 2017;8:15955.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG, Alberti A, et al. Patterns and ecological drivers of ocean viral communities. Science 2015;348:1261498.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 8.

    Danovaro R, Dell’Anno A, Corinaldesi C, Magagnini M, Noble R, Tamburini C, et al. Major viral impact on the functioning of benthic deep-sea ecosystems. Nature 2008;454:1084–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Danovaro R, Dell’Anno A, Corinaldesi C, EugenioRastelli, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv 2016;2:e1600492.

  • 10.

    Anantharaman K, Duhaime MB, Breier JA, Wendt KA, Toner BM, Dick GJ. Sulfur oxidation genes in diverse deep-sea viruses. Science 2014;344:757–60.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    He T, Li H, Zhang X. Deep-sea hydrothermal vent viruses compensate for microbial metabolism in virus–host interactions. mBio 2017;8:e00893–17.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Hurwitz BL, Hallam SJ, Sullivan MB. Metabolic reprogramming by viruses in the sunlit and dark ocean. Genome Biol. 2013;14:R123.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Hurwitz BL, Brum JR, Sullivan MB. Depth-stratified functional and taxonomic niche specialization in the ‘core’ and ‘flexible’ pacific ocean virome. ISME J. 2015;9:472–84.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E9.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.

  • 16.

    Mizuno CM, Ghai R, Saghaï A, López-García P, Rodriguez-Valera F. Genomes of abundant and widespread viruses from the deep ocean. mBio. 2016;7:e00805–16.

  • 17.

    Tangherlini M, Dell’Anno A, Allen LZ, Riccioni G, Corinaldesi C. Assessing viral taxonomic composition in benthic marine ecosystems: reliability and efficiency of different bioinformatic tools for viral metagenomic analyses. Sci Rep. 2016;6:28428.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Yang Y, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.

    Article 

    Google Scholar 

  • 19.

    Tang K, Lin D, Zheng Q, Liu K, Yang Y, Han Y, et al. Genomic, proteomic and bioinformatic analysis of two temperate phages in Roseobacter clade bacteria isolated from the deep-sea water. BMC Genomics. 2017;18:485.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Corte DD, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 21.

    Corte DD, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 22.

    Blankenship-Williams LE, Levin LA. Living deep: a synopsis of hadal trench ecology. Mar Technol Soc J. 2009;43:137–43.

    Article 

    Google Scholar 

  • 23.

    Jamieson AJ, Fujii T, Mayor DJ, Solan M, Priede IG. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol Evol. 2010;25:190–7.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Jamieson AJ. Ecology of deep oceans: hadal trenches. eLS. Chichester: Wiley; 2001.

  • 25.

    Glud RN, Wenzhöfer F, Middelboe M, Oguri K, Turnewitsch R, Canfield DE, et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat Geosci. 2013;6:284–8.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Nunoura T, Takaki Y, Hirai M, Shimamura S, Makabe A, Koide O, et al. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proc Natl Acad Sci USA. 2015;112:E1230–E6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Zhong H, Lehtovirta-Morley L, Liu J, Zheng Y, Lin H, Song D, et al. Novel insights into the Thaumarchaeota in the deepest oceans: their metabolism and potential adaptation mechanisms. Microbiome 2020;8:78.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Liu J, Zheng Y, Lin H, Wang X, Li M, Liu Y, et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 2019;7:47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Tamegai H, Li L, Nasui N, Kato C. A denitrifying bacterium from the deep sea at 11000-m depth. Extremophiles 1997;1:207–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Kato C, Li L, Nogi Y, Nakamura Y, Tamaoka J, Horikoshi K. Extremely barophilic bacteria isolated from the Mariana Trench, challenger deep, at a depth of 11,000 meters. Appl Environ Microbiol. 1998;64:1510–3.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Nogi Y, Kato C. Taxonomic studies of extremely barophilic bacteria isolated from the Mariana Trench and description of Moritella yayanosii sp. nov., a new barophilic bacterial isolate. Extremophiles 1999;3:71–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 32.

    Nogi Y, Hosoya S, Kato C, Horikoshi K. Colwellia piezophila sp. nov., a novel piezophilic species from deep-sea sediments of the Japan Trench. Int J Syst Evol Microbiol. 2004;54:1627–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Nogi Y, Hosoya S, Kato C, Horikoshi K. Psychromonas hadalis sp. nov., a novel piezophilic bacterium isolated from the bottom of the Japan Trench. Int J Syst Evol Microbiol. 2007;57:1360–4.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Kusube M, Kyaw TS, Tanikawa K, Chastain RA, Hardy KM, Cameron J, et al. Colwellia marinimaniae sp. nov., a hyperpiezophilic species isolated from an amphipod within the Challenger Deep, Mariana Trench. Int J Syst Evol Microbiol. 2017;67:824–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Wei Y, Fang J, Xu Y, Zhao W, Cao J. Corynebacterium hadale sp. nov. isolated from hadopelagic water of the New Britain Trench. Int J Syst Evol Microbiol. 2018;68:1474–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Ahmad W, Zheng Y, Li Y, Sun W, Hu Y, He X, et al. Marinobacter salinexigens sp. nov., a marine bacterium isolated from hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol. 2020;70:3794–800.

  • 37.

    Zhao X, Liu J, Zhou S, Zheng Y, Wu Y, Kogure K, et al. Diversity of culturable heterotrophic bacteria from the Mariana Trench and their ability to degrade macromolecules. Mar Life Sci Technol. 2020;2:181–93.

    Article 

    Google Scholar 

  • 38.

    Yoshida M, Yoshida-Takashima Y, Nunoura T, Takai K. Identification and genomic analysis of temperate Pseudomonas bacteriophage PstS-1 from the Japan trench at a depth of 7000 m. Res Microbiol. 2015;166:668–76.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Yoshida M, Takaki Y, Eitoku M, Nunoura T, Takai K. Metagenomic analysis of viral communities in (Hado)pelagic sediments. PLoS ONE. 2013;8:e57271.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Manea E, Dell’Anno A, Rastelli E, Tangherlini M, Nunoura T, Nomaki H, et al. Viral infections boost prokaryotic biomass production and organic C cycling in Hadal Trench sediments. Front Microbiol. 2019;10:1952.

  • 41.

    Zhang X, Xu W, Liu Y, Cai M, Luo Z, Li M. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a Hadal biosphere at the Yap Trench. Front Microbiol. 2018;9:2402.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 42.

    Peoples LM, Grammatopoulou E, Pombrol M, Xu X, Osuntokun O, Blanton J, et al. Microbial community diversity within sediments from two geographically separated Hadal Trenches. Front Microbiol. 2019;10:347.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Peoples LM, Donaldson S, Osuntokun O, Xia Q, Nelson A, Blanton J, et al. Vertically distinct microbial communities in the Mariana and Kermadec trenches. PLoS ONE. 2018;13:e0195102.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 44.

    NA J, JN F. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33). https://github.com/najoshi/sickle2011.

  • 45.

    Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Roux S, Enault F, Hurwitz BL, Sullivan MB. VirSorter: mining viral signal from microbial genomic data. PeerJ 2015;3:e985.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 47.

    Ren J, Ahlgren NA, Lu YY, Fuhrman JA, Sun F. VirFinder: a novel k-mer based tool for identifying viral sequences from assembled metagenomic data. Microbiome 2017;5:69.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Ahlgren NA, Ren J, Lu YY, Fuhrman JA, Sun F. Alignment-free d2* oligonucleotide frequency dissimilarity measure improves prediction of hosts from metagenomically-derived viral sequences. Nucleic Acids Res. 2017;45:39–53.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012;28:3150–2.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 50.

    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010;11:119.

    Article 
    CAS 

    Google Scholar 

  • 51.

    Paez-Espino D, Pavlopoulos GA, Ivanova NN, Kyrpides NC. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat Protoc. 2017;12:1673–82.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Paez-Espino D, Eloe-Fadrosh EA, Pavlopoulos GA, Thomas AD, Huntemann M, Mikhailova N, et al. Uncovering Earth’s virome. Nature 2016;536:425–30.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 53.

    Song W, Sun H-X, Zhang C, Cheng L, Peng Y, Deng Z, et al. Prophage Hunter: an integrative hunting tool for active prophages. Nucleic Acids Res. 2019;47:W74–W80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 54.

    O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–D45.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.

    CAS 
    Article 

    Google Scholar 

  • 56.

    Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, Cook H, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019;47:D309–D14.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 57.

    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, Mering CV, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Grazziotin AL, Koonin EV, Kristensen DM. Prokaryotic Virus Orthologous Groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 2017;45:D491–D8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD. HMMER web server: 2018 update. Nucleic Acids Res. 2018;46:W200–W4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42:D199–D205.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 61.

    Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 62.

    El-Gebali S, Mistry J, Bateman A, Eddy SR, Ae L, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–D32.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Roux S, Adriaenssens EM, Dutilh BE, Koonin EV, Kropinski AM, Krupovic M, et al. Minimum information about an uncultivated virus genome (MIUViG). Nat Biotechnol. 2019;37:29–37.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Paez-Espino D, Roux S, Chen I-MA, Palaniappan K, Ratner A, Chu K, et al. IMG/VR v.2.0: an integrated data management and analysis system for cultivated and environmental viral genomes. Nucleic Acids Res. 2019;47:D678–D86.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 65.

    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Tothc IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.

    Article 

    Google Scholar 

  • 66.

    Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, et al. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol. 2016;18:2064–77.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 67.

    Aylward FO, Moniruzzaman M. ViralRecall-a flexible command-line tool for the detection of giant virus signatures in Omic Data. Viruses 2021;13:150.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Jang HB, Bolduc B, Zablocki O, Kuhn JH, Roux S, Adriaenssens EM, et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat Biotechnol. 2019;37:632–9.

    Article 
    CAS 

    Google Scholar 

  • 69.

    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 70.

    Hurwitz BL, Sullivan MB. The Pacific Ocean virome (POV): a marine viral metagenomic dataset and associated protein clusters for quantitative viral ecology. PLoS ONE. 2013;8:e57355.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 71.

    Corte DD, Martínez JM, Cretoiu MS, Takaki Y, Nunoura T, Sintes E, et al. Viral communities in the global deep ocean conveyor belt assessed by targeted viromics. Front Microbiol. 2019;10:1801.

  • 72.

    Ghai R, Mehrshad M, Mizuno CM, Rodriguez-Valera F. Metagenomic recovery of phage genomes of uncultured freshwater actinobacteria. ISME J. 2017;11:304–8.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 73.

    Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 2010;26:841–2.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 75.

    Emerson JB, Roux S, Brum JR, Bolduc B, Woodcroft BJ, Jang HB, et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat Microbiol. 2018;3:870–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 76.

    Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.

    Article 

    Google Scholar 

  • 77.

    Getz EW, Tithi SS, Zhang L, Aylward FO. Parallel evolution of genome streamlining and cellular bioenergetics across the marine radiation of a bacterial phylum. mBio 2018;9:e01089–18.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 78.

    Karst SM, Kirkegaard RH, Albertsen M. mmgenome: a toolbox for reproducible genome extraction from metagenomes. Preprint at bioRxiv. 2016.

  • 79.

    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 80.

    Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–64.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Lin BY, Chan PP, Lowe TM. tRNAviz: explore and visualize tRNA sequence features. Nucleic Acids Res. 2019;47:W542–W7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, Kyrpides NC, et al. CRISPR recognition tool (CRT): a tool for automatic detection of clustered regularly interspaced palindromic repeats. BMC Bioinform. 2007;8:209.

    Article 
    CAS 

    Google Scholar 

  • 83.

    Edwards RA, McNair K, Faust K, Raes J, Dutilh BE. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol Rev. 2016;40:258–72.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 84.

    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.

    CAS 

    Google Scholar 

  • 85.

    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood treesfor large alignments. PLoS ONE. 2010;5:e9490.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 86.

    Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Malki K, Kula A, Bruder K, Sible E, Hatzopoulos T, Steidel S, et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol J. 2015;12:164.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 88.

    Touchon M, Bernheim A, Rocha EP. Genetic and life-history traits associated with the distribution of prophages in bacteria. ISME J. 2016;10:2744–54.

  • 89.

    Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 2017;11:1511–20.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Hulo C, Castro ED, Masson P, Bougueleret L, Bairoch A, Xenarios I, et al. ViralZone: a knowledge resource to understand virus diversity. Nucleic Acids Res. 2011;39:D576–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 91.

    Hurwitz BL, U’Ren JM. Viral metabolic reprogramming in marine ecosystems. Curr Opin Microbiol. 2016;31:161–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 92.

    Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27:135–45.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 93.

    Takahashi S, Furukawara M, Omae K, Tadokoro N, Saito Y, Abe K, et al. A highly stable D-amino acid oxidase of the thermophilic bacterium Rubrobacter xylanophilus. Appl Environ Microbiol. 2014;80:7219–29.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 94.

    Brister JR, Ako-adjei D, Bao Y, Blinkova O. NCBI viral genomes resource. Nucleic Acids Res. 2015;43:D571–D7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Al-Shayeb B, Sachdeva R, Chen L-X, Ward F, Munk P, Devoto A, et al. Clades of huge phages from across Earth’s ecosystems. Nature 2020;578:425–31.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 96.

    Ahlgren NA, Fuchsman CA, Rocap G, Fuhrman JA. Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes. ISME J 2019;13:618–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 97.

    Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA. 2019;116:15645–50.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 98.

    Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 99.

    Kioka A, Schwestermann T, Moernaut J, Ikehara K, Kanamatsu T, McHugh CM, et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci Rep. 2019;9:1553.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 100.

    Mestrea M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci USA. 2018;115:E6799–E807.

    Article 
    CAS 

    Google Scholar 

  • 101.

    Boeuf D, Edwards BR, Eppley JM, Hu SK, Poff KE, Romano AE, et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal ocean. Proc Natl Acad Sci USA. 2019;116:11824–32.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 102.

    Tamsitt V, Drake HF, Morrison AK, Talley LD, Dufour CO, Gray AR, et al. Spiraling pathways of global deep waters to the surface of the Southern Ocean. Nat Commun. 2017;8:172.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 103.

    Fukamachi Y, Rintoul SR, Church JA, Aoki S, Sokolov S, Rosenberg MA, et al. Strong export of Antarctic bottom water east of the Kerguelen plateau. Nat Geosci. 2010;3:327–31.

    CAS 
    Article 

    Google Scholar 

  • 104.

    Garabato ACN, Frajka-Williams EE, Spingys CP, Legg S, Polzin KL, Forryan A, et al. Rapid mixing and exchange of deep-ocean waters in an abyssal boundary current. Proc Natl Acad Sci USA. 2019;116:13233–8.

    Article 
    CAS 

    Google Scholar 

  • 105.

    Stewart HA, Jamieson AJ. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog Oceanogr. 2018;161:47–65.

    Article 

    Google Scholar 

  • 106.

    Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2:1367–73.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 107.

    Giovannoni SJ, Thrash JC, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 108.

    Xu Y, Ge H, Fang J. Biogeochemistry of hadal trenches: recent developments and future perspectives. Deep Sea Res Part II. 2018;155:19–26.

    CAS 
    Article 

    Google Scholar 

  • 109.

    Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature 2009;461:258–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 110.

    Mann NH, Cook A, Millard A, Bailey S, Clokie M. Bacterial photosynthesis genes in a virus. Nature 2003;424:741.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 111.

    Takahashi S, Abe K, Kera Y. Bacterial d-amino acid oxidases: recent findings and future perspectives. Bioengineered 2015;6:237–41.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 112.

    Kaiser K, Benner R. Major bacterial contribution to the ocean reservoir of detrital organic carbon and nitrogen. Limnol Oceanogr. 2008;53:99–112.

    CAS 
    Article 

    Google Scholar 

  • 113.

    Zhang Z, Zheng Q, Jiao N. Microbial D-amino acids and marine carbon storage. Sci China Earth Sci. 2016;59:17–24.

    Article 
    CAS 

    Google Scholar 


  • Source: Ecology - nature.com

    Ekotrope makes building energy-efficient homes easier

    Using mechanics for cleaner membranes