Roces, F. Individual complexity and self-organization in foraging by leaf-cutting ants. Biol. Bull. 202, 306–313 (2002).
Google Scholar
Cerdá, X., Angulo, E., Boulay, R. & Lenoir, A. Individual and collective foraging decisions: A field study of worker recruitment in the gypsy ant Aphaenogaster senilis. Behav. Ecol. Sociobiol. 63, 551–562 (2009).
Google Scholar
Dussutour, A., Deneubourg, J.-L., Beshers, S. & Fourcassié, V. Individual and collective problem-solving in a foraging context in the leaf-cutting ant Atta colombica. Anim. Cogn. 12, 21–30 (2009).
Google Scholar
Leboeuf, A. C. & Grozinger, C. M. Me and we: The interplay between individual and group behavioral variation in social collectives. Curr. Opin. Insect Sci. 5, 16–24 (2014).
Google Scholar
Feinerman, O. & Korman, A. Individual versus collective cognition in social insects. J. Exp. Biol. 220, 73–82 (2017).
Google Scholar
Frank, E. T. & Linsenmair, K. E. Individual versus collective decision making: Optimal foraging in the group-hunting termite specialist Megaponera analis. Anim. Behav. 130, 27–35 (2017).
Google Scholar
Menzel, R., Leboulle, G. & Eisenhardt, D. Small brains, bright minds. Cell 124, 237–239 (2006).
Google Scholar
Leadbeater, E. & Chittka, L. Social learning in insects—From miniature brains to consensus building. Curr. Biol. 17, 703–713 (2007).
Google Scholar
Giurfa, M. Cognition with few neurons: Higher-order learning in insects. Trends Neurosci. 36, 285–294 (2013).
Google Scholar
Guerrieri, F. J. & D’Ettorre, P. Associative learning in ants: Conditioning of the maxilla-labium extension response in Camponotus aethiops. J. Insect Physiol. 56, 88–92 (2010).
Google Scholar
Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).
Google Scholar
Goss, S., Aron, S., Deneubourg, J. L. & Pasteels, J. M. Self-organized shortcuts in the Argentine ant. Naturwissenschaften 76, 579–581 (1989).
Google Scholar
Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).
Google Scholar
Czaczkes, T. J. et al. Composite collective decision-making. Proc. Biol. Sci. 282, 20142723 (2015).
Google Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. TREE 12, 188–194 (1997).
Google Scholar
Boomsma, J. J. & Franks, N. R. Social insects: From selfish genes to self organisation and beyond. Trends Ecol. Evol. 21, 303–308 (2006).
Google Scholar
Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E. Self-Organization in Biological Systems. (Princeton University Press, 2003).
Constant, N., Santorelli, L.A., Lopes, J.F.S., Hughes, W.O.H. The effects of genotype, caste, and age on foraging performance in leaf-cutting ants. Behav. Ecol. 23, 1284–1288 (2012).
Feinerman, O. & Traniello, J. F. A. Social complexity, diet, and brain evolution: Modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav. Ecol. Sociobiol. 70, 1063–1074 (2016).
Google Scholar
McCluskey, E.S. Circadian-rhythms in male-ants of five diverse species. Science (80- ) 150, 1037–1039 (1965).
North, R. D. Circadian rhythm of locomotor activity in individual workers of the wood ant Formica rufa. Physiol. Entomol. 12, 445–454 (1987).
Google Scholar
Cros, S., Cerdá, X., Retana, J., De, E. U. & De, C. F. Spatial and temporal variations in the activity patterns of Mediterranean ant communities. Écoscience 4, 269–278 (1997).
Google Scholar
Bellusci, S. & David, M. M. Circadian activity rhythm of the foragers of a eusocial bee (Scaptotrigona aff depilis, Hymenoptera, Apidae, Meliponinae) outside the nest. Biol. Rhythm Res. 32, 117–124 (2001).
Google Scholar
Narendra, A., Reid, S.F., Greiner, B., Peters, R.A., Hemmi, J.M., Ribi, W.A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. Biol. Sci. 278, 1141–1149 (2011).
Yilmaz, A., Aksoy, V., Camlitepe, Y. & Giurfa, M. Eye structure, activity rhythms, and visually-driven behavior are tuned to visual niche in ants. Front. Behav. Neurosci. 8, 205 (2014).
Google Scholar
Nickele, M. A., Filho, W. R., Pie, M. R. & Penteado, S. R. C. Daily foraging activity of Acromyrmex (Hymenoptera: Formicidae) leaf-cutting ants. Sociobiology 63, 645–650 (2016).
Google Scholar
Aschoff, J. Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25, 11–28 (1960).
Google Scholar
Hall, J. C. Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1–280 (2003).
Google Scholar
Sandrelli, F., Costa, R., Kyriacou, C. P. & Rosato, E. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol. 17, 447–463 (2008).
Google Scholar
Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).
Google Scholar
Abbot, P., Abe, J., Alcock, J., Alizon, S., Alpedrinha, J.A.C., Andersson, M. et al. Inclusive fitness theory and eusociality. Nature 471, E1–E4 (2011).
Kost, C., De Oliveira, E. G., Knoch, T. A. & Wirth, R. Spatio-temporal permanence and plasticity of foraging trails in young and mature leaf-cutting ant colonies (Atta spp.). J. Trop. Ecol. 21, 677–688 (2005).
Bochynek, T., Meyer, B. & Burd, M. Energetics of trail clearing in the leaf-cutter ant Atta. Behav. Ecol. Sociobiol. 71, 1–10 (2017).
Google Scholar
Bouchebti, S., Travaglini, R. V., Forti, L. C. & Fourcassié, V. Dynamics of physical trail construction and of trail usage in the leaf-cutting ant Atta laevigata. Ethol. Ecol. Evol. 31, 105–120 (2019).
Google Scholar
Cherrett, J. M. The foraging behavior of Atta cephalotes L. J. Anim. Ecol. 37, 387–403 (1968).
Google Scholar
Lewis, T., Pollard, G.V., Dibley, G.C. Rhythmic foraging in the leaf-cutting ant Atta cephalotes (L.) (Formicidae: Attini). J. Anim. Ecol. 43, 129 (1974).
Sharma, V. K., Lone, S. R., Mathew, D., Goel, A. & Chandrashekaran, M. K. Possible evidence for shift work schedules in the media workers of the ant species Camponotus compressus. Chronobiol. Int. 21, 297–308 (2004).
Google Scholar
Koto, A., Mersch, D., Hollis, B. & Keller, L. Social isolation causes mortality by disrupting energy homeostasis in ants. Behav. Ecol. Sociobiol. 69, 583–591 (2015).
Google Scholar
Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) I. The overall pattern in A. sexdens. Behav. Ecol. Sociobiol. 7, 143–156 (1980).
Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera : Formicidae : Atta) II. The ergonomic optimization of leaf cutting. Behav. Ecol. Sociobiol. 7, 157–165 (1980).
Holbrook, C. T., Eriksson, T. H., Overson, R. P., Gadau, J. & Fewell, J. H. Colony-size effects on task organization in the harvester ant Pogonomyrmex californicus. Insect. Soc. 60, 191–201 (2013).
Google Scholar
Martinoya, C., Bloch, S., Ventura, D. F. & Puglia, N. M. Spectral efficiency as measured by ERG in the ant (Atta sexdens rubropilosa). J. Comp. Physiol A 104, 205–210 (1975).
Google Scholar
Kaiser, W. Busy bees need rest, too. J. Comp. Physiol. A 163, 565–584 (1988).
Google Scholar
Sauer, S., Herrmann, E. & Kaiser, W. Sleep deprivation in honey bees. J. Sleep Res. 13, 145–152 (2004).
Google Scholar
Klein, B. A., Klein, A., Wray, M. K., Mueller, U. G. & Seeley, T. D. Sleep deprivation impairs precision of waggle dance signaling in honey bees. Proc. Natl. Acad. Sci. 107, 22705–22709 (2010).
Google Scholar
Mildner, S. & Roces, F. Plasticity of daily behavioral rhythms in foragers and nurses of the ant Camponotus rufipes: Influence of social context and feeding times. PLoS ONE 12, e0169244 (2017).
Google Scholar
Fujioka, H. et al. Ant circadian activity associated with brood care type. Biol. Lett. 13, 20160743 (2017).
Google Scholar
Klein, B. A., Olzsowy, K. M., Klein, A., Saunders, K. M. & Seeley, T. D. Caste-dependent sleep of worker honey bees. J. Exp. Biol. 211, 3028–3040 (2008).
Google Scholar
Bloch, G., Toma, D. P. & Robinson, G. E. Behavioral rhythmicity, age, division of labor and period expression in the honey bee brain. J. Biol. Rhythms 16, 444–456 (2001).
Google Scholar
Bloch, G. The social clock of the honeybee. J. Biol. Rhythms 25, 307–317 (2010).
Google Scholar
Bloch, G., Sullivan, J. P. & Robinson, G. E. Juvenile hormone and circadian locomotor activity in the honey bee Apis mellifera. J. Insect Physiol. 48, 1123–1131 (2002).
Google Scholar
Bernhard Kraus, F., Gerecke, E., Moritz, R.F.A. Shift work has a genetic basis in honeybee pollen foragers (Apis mellifera L.). Behav. Genet. 41, 323–328 (2011).
Wilson, E.O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta) III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 55–60 (1983).
Detrain, C., Pasteels, J.M. Caste differences in behavioral thresholds as a basis for polyethism during food recruitment in the ant, Pheidole pallidula (Nyl.) (Hymenoptera: Myrmicinae). J. Insect Behav. 4, 157–176 (1991).
Lighton, J. R. B. & QuinlanJr, M. C. D. H. F. Is bigger better? Water balance in the polymorphic desert harvester ant Messor pergandei. Physiol. Entomol. 19, 325–334 (1994).
Google Scholar
Cerdá, X. & Retana, J. Links between worker polymorphism and thermal biology in a thermophilic ant species. Oikos 78, 467 (1997).
Google Scholar
Clémencet, J., Cournault, L., Odent, A. & Doums, C. Worker thermal tolerance in the thermophilic ant Cataglyphis cursor (Hymenoptera, Formicidae). Insectes Soc. 57, 11–15 (2010).
Google Scholar
Gadagkar, R. The evolution of caste polymorphism in social insects: Genetic release followed by diversifying evolution. J. Genet. 76, 167–179 (1997).
Google Scholar
Helms Cahan, S. & Keller, L. Complex hybrid origin of genetic caste determination in harvester ants. Nature 424, 306–309 (2003).
Google Scholar
Fjerdingstad, E. J. & Crozier, R. H. The evolution of worker caste diversity in social insects. Am. Nat. 167, 390–400 (2012).
Google Scholar
Trible, W. et al. Orco mutagenesis causes loss of antennal lobe glomeruli and impaired social behavior in ants. Cell 170(727–735), e10 (2017).
De, T. M. A. et al. Two castes sizes of leafcutter ants in task partitioning in foraging activity. Ciênc. Rural 46, 1902–1908 (2016).
Google Scholar
Sharkey, K. M. & Eastman, C. I. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am. J. Physiol. Integr. Comp. Physiol. 282, R454–R463 (2002).
Google Scholar
Source: Ecology - nature.com