Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).
Google Scholar
Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x (2010).
Google Scholar
Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981. https://doi.org/10.1111/j.1365-2427.2012.02758.x (2012).
Google Scholar
Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).
Google Scholar
Mamos, T., Wattier, R., Burzýnski, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).
Google Scholar
Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).
Google Scholar
Copilaş-Ciocianu, D., Zimţa, A. A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).
Google Scholar
Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297. https://doi.org/10.1111/jzs.12248 (2019).
Google Scholar
Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2020).
Google Scholar
Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—A result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).
Google Scholar
Kotlík, P. et al. A northern glacial refugium for bank voles (Clethrionomys glareolus). PNAS 103, 14860–14864. https://doi.org/10.1073/pnas.0603237103 (2006).
Google Scholar
Theissinger, K. et al. Glacial survival and post-glacial recolonization of an arctic-alpine freshwater insect (Arcynopteryx dichroa, Plecoptera, Perlodidae) in Europe. J. Biogeogr. 40, 236–248. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2012).
Google Scholar
Vörös, J., Mikulíček, P., Major, Á., Recuero, E. & Arntzen, J. W. Phylogeographic analysis reveals northern refugia for the riverine amphibian Triturus dobrogicus (Caudata: Salamandridae). Biol. J. Linn. Soc. 119, 974–991. https://doi.org/10.1111/bij.12866 (2016).
Google Scholar
Copilaș-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).
Google Scholar
Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. Holocene 28(4), 583–594. https://doi.org/10.1177/0959683617735592 (2017).
Google Scholar
Mamos, T., Jażdżewski, K., Čiamporová-Zaťovičová, Z., Čiampor, F. & Grabowski, M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci. Rep. 11, 21629. https://doi.org/10.1038/s41598-021-00320-8 (2021).
Google Scholar
Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: Evidence for Alpine refugia rapid colonization after the Pleistocene glaciations. Mol. Ecol. 14, 1133–1150. https://doi.org/10.1111/j.1365-294X.2005.02479.x (2005).
Google Scholar
Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence genetic consequences. New Phytol. 171, 199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x (2006).
Google Scholar
Jamrichová, E., Potůčková, A. & Horsák, M. Landscape history, calcareous fen development historical events in the Slovak Eastern Carpathians. Veg. Hist. Archaeobot. 23, 497–513. https://doi.org/10.1007/s00334-013-0416-0 (2014).
Google Scholar
Jamrichová, E., Petr, L. & Jiménez-Alfaro, B. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J. Biogeogr. 44, 2386–2397 (2017).
Google Scholar
Wielstra, B., Babik, W. & Arntzen, J. W. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol. J. Linn. Soc. 114, 574–587. https://doi.org/10.1111/bij.12446 (2015).
Google Scholar
Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).
Google Scholar
Pauls, S. U., Lumbsch, H. A. T. & Haase, P. Phylogeography of the montane caddisfly Drusus discolor: Evidence for multiple refugia and periglacial survival. Mol. Ecol. 15(8), 2153–2169. https://doi.org/10.1111/j.1365-294X.2006.02916.x (2006).
Google Scholar
Pauls, S. U., Theissinger, K., Ujvarosi, L., Bálint, M. & Haase, P. Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. J. N. Am. Benthol. Soc. 28, 517–536. https://doi.org/10.1899/08-100.1 (2009).
Google Scholar
Lehrian, S., Pauls, S. U. & Haase, P. Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the Central European highlands. Freshw. Biol. 54, 283–295. https://doi.org/10.1111/j.1365-2427.2008.02107.x (2009).
Google Scholar
Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 216, 434–437 (1996).
Google Scholar
Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).
Google Scholar
Robert, S. & Curtean-Bănăduc, A. Aspects concerning Târnava Mare and Târnava Mică rivers (Transylvania, Romania) caddisfly (Insecta, Trichoptera) larvae communities. Transylv. Rev. Syst. Ecol. Res. 2, 89–98 (2005).
Bálint, M., Ujvárosi, L., Dénes, A. L. & Octavian, P. European phylogeography of Rhyacophila tristis Pictet (Trichoptera: Rhyacophilidae): Preliminary results. Zoosymposia 5, 11–18. https://doi.org/10.11646/zoosymposia.5.1.1 (2011).
Google Scholar
Bielik, M. Geophysical features of the Slovak Western Carpathians. Geol. Q. 43, 251–262. https://doi.org/10.1016/j.quascirev.2008.08.019 (1999).
Google Scholar
Céréghino, R., Cugny, P. & Lavandier, P. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol. 87, 47–60. https://doi.org/10.1002/1522-2632(200201)87:1%3c47::AID-IROH47%3e3.0.CO;2-9 (2002).
Google Scholar
Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).
Google Scholar
Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).
Google Scholar
Bozáňová, J., Čiamporová-Zaťovičová, Z., Čiampor, F. Jr., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).
Google Scholar
Jedlička, L., Kúdela, M., Szemes, T. & Celec, P. Population genetic structure of Simulium degrangei (Diptera: Simuliidae) from Western Carpathians. Biologia 67, 777–787. https://doi.org/10.2478/s11756-012-0057-2 (2012).
Google Scholar
Hughes, J. M., Bunn, S. E., Hurwood, D. A. & Cleary, C. Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasmiidae) in rainforest streams, south-east Queensland, Australia. Freshw. Biol. 41, 1–10 (1998).
Finn, D. S., Theobald, D. M., Black, W. C. & Poff, N. L. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol. Ecol. 15, 3553–3566 (2006).
Google Scholar
Vuataz, L., Rutschmann, S., Monaghan, M. T. & Sartori, M. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae). BMC Evol. Biol. 16, 194. https://doi.org/10.1186/s12862-016-0758-1 (2016).
Google Scholar
Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. J. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).
Google Scholar
Spielman, D., Brook, B. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. 101, 15261–15264 (2004).
Google Scholar
Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).
Google Scholar
Bunn, S. E. & Hughes, J. M. Dispersal and recruitment in streams: Evidence from genetic studies. J. N. Am. Benthol. Soc. 16, 338–346. https://doi.org/10.2307/1468022 (1997).
Google Scholar
Barron, E. & Pollard, D. High-resolution climate simulations of oxygen isotope stage 3 in Europe. Quat. Res. 28, 296–309. https://doi.org/10.1006/qres.2002.2374 (2002).
Google Scholar
Bennet, K. & Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 27, 2449–2455 (2008).
Google Scholar
Kondracki, J. Karpaty. Wydanie drugie i poprawione [The Carpathians. Ed. 2].—Wydawnictwa Szkolne i Pedagogiczne, Warszawa (1989).
Grecula, P. (ed.). Geological evolution of the Western Carpathians. Monograph: Mineralia Slovaca (1997).
Lukniš, M. The course of the last glaciation of the Western Carpathians in the relation to the Alps, to the glaciation of northern Europe, and to the division of the central European Wurm into periods. Geografický Časopis 16, 127–142 (1964).
Lindner, L., Dzierzek, J., Marciniak, B. & Nitychoruk, J. Outline of Quaternary glaciations in the Tatra Mts.: Their development, age and limits. Geol. Q. 47, 269–280 (2003).
Frost, S. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49, 161–173. https://doi.org/10.1016/j.biocon.2005.05.002 (1971).
Google Scholar
Sedlák, E. Řád Chrostíci—Trichoptera. In Klíč vodních larev hmyzu (ed. Rozkošný, R.) 163–220 (ČSAV, 1980).
Waringer, J. & Graf, W. Atlas of Central European Trichoptera Larvae: Atlas der Mitteleuropäischen Köcherfliegenlarven (Erik Mauch, 2011).
Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).
Google Scholar
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).
Google Scholar
Bálint, M., Botoşaneanu, L., Ujvárosi, L. & Popescu, O. Taxonomic revision of Rhyacophila aquitanica (Trichoptera: Rhyacophilidae), based on molecular and morphological evidence and change of taxon status of Rhyacophila aquitanica ssp. carpathica to Rhyacophila carpathica stat. n. Zootaxa 2148, 39–48. https://doi.org/10.11646/zootaxa.2148.1.3 (2009).
Google Scholar
Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).
Google Scholar
Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).
Google Scholar
Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).
Google Scholar
Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).
Google Scholar
Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21(2), 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).
Google Scholar
Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).
Google Scholar
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).
Google Scholar
Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).
Google Scholar
Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17(42), 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).
Google Scholar
Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. PNAS 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491 (1994).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).
Google Scholar
Miller, M. P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724. https://doi.org/10.1093/jhered/esi119 (2005).
Google Scholar
Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).
Google Scholar
Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).
Google Scholar
Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123(3), 597–601 (1989).
Google Scholar
Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2), 915–925 (1997).
Google Scholar
Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 14, 693–709 (1993).
Google Scholar
Source: Ecology - nature.com