in

DNA barcodes evidence the contact zone of eastern and western caddisfly lineages in the Western Carpathians

  • 1.

    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: Combining landscape ecology and population genetics. Trends Ecol. Evol. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).

    Article 

    Google Scholar 

  • 2.

    Storfer, A., Murphy, M. A., Spear, S. F., Holderegger, R. & Waits, L. P. Landscape genetics: Where are we now?. Mol. Ecol. 19, 3496–3514. https://doi.org/10.1111/j.1365-294X.2010.04691.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Alp, M., Keller, I., Westram, A. M. & Robinson, C. T. How river structure and biological traits influence gene flow: A population genetic study of two stream invertebrates with differing dispersal abilities. Freshw. Biol. 57, 969–981. https://doi.org/10.1111/j.1365-2427.2012.02758.x (2012).

    Article 

    Google Scholar 

  • 4.

    Mamos, T., Wattier, R., Majda, A., Sket, B. & Grabowski, M. Morphological vs. molecular delineation of taxa across montane regions in Europe: The case study of Gammarus balcanicus Schäferna, 1922 (Crustacea: Amphipoda). J. Zool. Syst. Evol. Res. 52, 237–248. https://doi.org/10.1111/jzs.12062 (2014).

    Article 

    Google Scholar 

  • 5.

    Mamos, T., Wattier, R., Burzýnski, A. & Grabowski, M. The legacy of a vanished sea: A high level of diversification within a European freshwater amphipod species complex driven by 15 My of Paratethys regression. Mol. Ecol. 25, 795–810. https://doi.org/10.1111/mec.13499 (2016).

    Article 
    PubMed 

    Google Scholar 

  • 6.

    Grabowski, M., Mamos, T., Bacela-Spychalska, K., Rewicz, T. & Wattier, R. A. Neogene paleogeography provides context for understanding the origin and spatial distribution of cryptic diversity in a widespread balkan freshwater amphipod. PeerJ 5, e3016. https://doi.org/10.7717/peerj.3016 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Copilaş-Ciocianu, D., Zimţa, A. A., Grabowski, M. & Petrusek, A. Survival in northern microrefugia in an endemic Carpathian gammarid (Crustacea: Amphipoda). Zool. Scr. 47, 357–372. https://doi.org/10.1111/zsc.12285 (2018).

    Article 

    Google Scholar 

  • 8.

    Copilaș-Ciocianu, D., Zimța, A. & Petrusek, A. Integrative taxonomy reveals a new Gammarus species (Crustacea, Amphipoda) surviving in a previously unknown southeast European glacial refugium. J. Zool. Syst. Evol. Res. 57, 272–297. https://doi.org/10.1111/jzs.12248 (2019).

    Article 

    Google Scholar 

  • 9.

    Wattier, R. et al. Continental-scale patterns of hyper-cryptic diversity within the freshwater model taxon Gammarus fossarum (Crustacea, Amphipoda). Sci. Rep. 10, 16536. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Neumann, K. et al. Genetic spatial structure of European common hamsters (Cricetus cricetus)—A result of repeated range expansion and demographic bottlenecks. Mol. Ecol. 14, 1473–1483. https://doi.org/10.1111/j.1365-294X.2005.02519.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Kotlík, P. et al. A northern glacial refugium for bank voles (Clethrionomys glareolus). PNAS 103, 14860–14864. https://doi.org/10.1073/pnas.0603237103 (2006).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Theissinger, K. et al. Glacial survival and post-glacial recolonization of an arctic-alpine freshwater insect (Arcynopteryx dichroa, Plecoptera, Perlodidae) in Europe. J. Biogeogr. 40, 236–248. https://doi.org/10.1111/j.1365-2699.2012.02793.x (2012).

    Article 

    Google Scholar 

  • 13.

    Vörös, J., Mikulíček, P., Major, Á., Recuero, E. & Arntzen, J. W. Phylogeographic analysis reveals northern refugia for the riverine amphibian Triturus dobrogicus (Caudata: Salamandridae). Biol. J. Linn. Soc. 119, 974–991. https://doi.org/10.1111/bij.12866 (2016).

    Article 

    Google Scholar 

  • 14.

    Copilaș-Ciocianu, D., Rutová, T., Pařil, P. & Petrusek, A. Epigean gammarids survived millions of years of severe climatic fluctuations in high latitude refugia throughout the Western Carpathians. Mol. Phylogenet. Evol. 112, 218–229. https://doi.org/10.1016/j.ympev.2017.04.027 (2017).

    Article 

    Google Scholar 

  • 15.

    Juřičková, L. et al. Early postglacial recolonisation, refugial dynamics the origin of a major biodiversity hotspot. A case study from the Malá Fatra mountains, Western Carpathians, Slovakia. Holocene 28(4), 583–594. https://doi.org/10.1177/0959683617735592 (2017).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Mamos, T., Jażdżewski, K., Čiamporová-Zaťovičová, Z., Čiampor, F. & Grabowski, M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci. Rep. 11, 21629. https://doi.org/10.1038/s41598-021-00320-8 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Pinceel, J., Jordaens, K., Pfenninger, M. & Backeljau, T. Rangewide phylogeography of a terrestrial slug in Europe: Evidence for Alpine refugia rapid colonization after the Pleistocene glaciations. Mol. Ecol. 14, 1133–1150. https://doi.org/10.1111/j.1365-294X.2005.02479.x (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Magri, D. et al. A new scenario for the Quaternary history of European beech populations: Palaeobotanical evidence genetic consequences. New Phytol. 171, 199–221. https://doi.org/10.1111/j.1469-8137.2006.01740.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Jamrichová, E., Potůčková, A. & Horsák, M. Landscape history, calcareous fen development historical events in the Slovak Eastern Carpathians. Veg. Hist. Archaeobot. 23, 497–513. https://doi.org/10.1007/s00334-013-0416-0 (2014).

    Article 

    Google Scholar 

  • 20.

    Jamrichová, E., Petr, L. & Jiménez-Alfaro, B. Pollen-inferred millennial changes in landscape patterns at a major biogeographical interface within Europe. J. Biogeogr. 44, 2386–2397 (2017).

    Article 

    Google Scholar 

  • 21.

    Wielstra, B., Babik, W. & Arntzen, J. W. The crested newt Triturus cristatus recolonized temperate Eurasia from an extra-Mediterranean glacial refugium. Biol. J. Linn. Soc. 114, 574–587. https://doi.org/10.1111/bij.12446 (2015).

    Article 

    Google Scholar 

  • 22.

    Mráz, P. & Ronikier, M. Biogeography of the Carpathians: Evolutionary spatial facets of biodiversity. Biol. J. Linn. Soc. 119, 528–559. https://doi.org/10.1111/bij.12918 (2016).

    Article 

    Google Scholar 

  • 23.

    Pauls, S. U., Lumbsch, H. A. T. & Haase, P. Phylogeography of the montane caddisfly Drusus discolor: Evidence for multiple refugia and periglacial survival. Mol. Ecol. 15(8), 2153–2169. https://doi.org/10.1111/j.1365-294X.2006.02916.x (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Pauls, S. U., Theissinger, K., Ujvarosi, L., Bálint, M. & Haase, P. Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: Historic introgression, limited dispersal, and cryptic diversity. J. N. Am. Benthol. Soc. 28, 517–536. https://doi.org/10.1899/08-100.1 (2009).

    Article 

    Google Scholar 

  • 25.

    Lehrian, S., Pauls, S. U. & Haase, P. Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the Central European highlands. Freshw. Biol. 54, 283–295. https://doi.org/10.1111/j.1365-2427.2008.02107.x (2009).

    Article 

    Google Scholar 

  • 26.

    Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 216, 434–437 (1996).

    Article 

    Google Scholar 

  • 27.

    Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).

    Book 

    Google Scholar 

  • 28.

    Robert, S. & Curtean-Bănăduc, A. Aspects concerning Târnava Mare and Târnava Mică rivers (Transylvania, Romania) caddisfly (Insecta, Trichoptera) larvae communities. Transylv. Rev. Syst. Ecol. Res. 2, 89–98 (2005).

    Google Scholar 

  • 29.

    Bálint, M., Ujvárosi, L., Dénes, A. L. & Octavian, P. European phylogeography of Rhyacophila tristis Pictet (Trichoptera: Rhyacophilidae): Preliminary results. Zoosymposia 5, 11–18. https://doi.org/10.11646/zoosymposia.5.1.1 (2011).

    Article 

    Google Scholar 

  • 30.

    Bielik, M. Geophysical features of the Slovak Western Carpathians. Geol. Q. 43, 251–262. https://doi.org/10.1016/j.quascirev.2008.08.019 (1999).

    Article 

    Google Scholar 

  • 31.

    Céréghino, R., Cugny, P. & Lavandier, P. Influence of intermittent hydropeaking on the longitudinal zonation patterns of benthic invertebrates in a mountain stream. Int. Rev. Hydrobiol. 87, 47–60. https://doi.org/10.1002/1522-2632(200201)87:1%3c47::AID-IROH47%3e3.0.CO;2-9 (2002).

    Article 

    Google Scholar 

  • 32.

    Sworobowicz, L., Mamos, T., Grabowski, M. & Wysocka, A. Lasting through the ice age: The role of the proglacial refugia in the maintenance of genetic diversity, population growth, and high dispersal rate in a widespread freshwater crustacean. Freshw. Biol. 65, 1028–1046. https://doi.org/10.1111/fwb.13487 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Rudolph, K., Coleman, C. O., Mamos, T. & Grabowski, M. Description and post-glacial demography of Gammarus jazdzewskii sp. nov. (Crustacea: Amphipoda) from Central Europe. Syst. Biodivers. 16, 587–603. https://doi.org/10.1080/14772000.2018.1470118 (2018).

    Article 

    Google Scholar 

  • 34.

    Bozáňová, J., Čiamporová-Zaťovičová, Z., Čiampor, F. Jr., Mamos, T. & Grabowski, M. The tale of springs and streams: How different aquatic ecosystems impacted the mtDNA population structure of two riffle beetles in the Western Carpathians. PeerJ 8, e10039. https://doi.org/10.7717/peerj.10039 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Jedlička, L., Kúdela, M., Szemes, T. & Celec, P. Population genetic structure of Simulium degrangei (Diptera: Simuliidae) from Western Carpathians. Biologia 67, 777–787. https://doi.org/10.2478/s11756-012-0057-2 (2012).

    Article 

    Google Scholar 

  • 36.

    Hughes, J. M., Bunn, S. E., Hurwood, D. A. & Cleary, C. Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasmiidae) in rainforest streams, south-east Queensland, Australia. Freshw. Biol. 41, 1–10 (1998).

    Google Scholar 

  • 37.

    Finn, D. S., Theobald, D. M., Black, W. C. & Poff, N. L. Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol. Ecol. 15, 3553–3566 (2006).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Vuataz, L., Rutschmann, S., Monaghan, M. T. & Sartori, M. Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae). BMC Evol. Biol. 16, 194. https://doi.org/10.1186/s12862-016-0758-1 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Schiffers, K., Bourne, E. C., Lavergne, S., Thuiller, W. & Travis, J. M. J. Limited evolutionary rescue of locally adapted populations facing climate change. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120083. https://doi.org/10.1098/rstb.2012.0083 (2013).

    Article 

    Google Scholar 

  • 40.

    Spielman, D., Brook, B. & Frankham, R. Most species are not driven to extinction before genetic factors impact them. Proc. Natl. Acad. Sci. 101, 15261–15264 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 41.

    Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).

    Article 

    Google Scholar 

  • 42.

    Bunn, S. E. & Hughes, J. M. Dispersal and recruitment in streams: Evidence from genetic studies. J. N. Am. Benthol. Soc. 16, 338–346. https://doi.org/10.2307/1468022 (1997).

    Article 

    Google Scholar 

  • 43.

    Barron, E. & Pollard, D. High-resolution climate simulations of oxygen isotope stage 3 in Europe. Quat. Res. 28, 296–309. https://doi.org/10.1006/qres.2002.2374 (2002).

    Article 

    Google Scholar 

  • 44.

    Bennet, K. & Provan, J. What do we mean by “refugia”? Quat. Sci. Rev. 27, 2449–2455 (2008).

    ADS 
    Article 

    Google Scholar 

  • 45.

    Kondracki, J. Karpaty. Wydanie drugie i poprawione [The Carpathians. Ed. 2].—Wydawnictwa Szkolne i Pedagogiczne, Warszawa (1989).

  • 46.

    Grecula, P. (ed.). Geological evolution of the Western Carpathians. Monograph: Mineralia Slovaca (1997).

  • 47.

    Lukniš, M. The course of the last glaciation of the Western Carpathians in the relation to the Alps, to the glaciation of northern Europe, and to the division of the central European Wurm into periods. Geografický Časopis 16, 127–142 (1964).

    Google Scholar 

  • 48.

    Lindner, L., Dzierzek, J., Marciniak, B. & Nitychoruk, J. Outline of Quaternary glaciations in the Tatra Mts.: Their development, age and limits. Geol. Q. 47, 269–280 (2003).

    Google Scholar 

  • 49.

    Frost, S. Evaluation of kicking technique for sampling stream bottom fauna. Can. J. Zool. 49, 161–173. https://doi.org/10.1016/j.biocon.2005.05.002 (1971).

    Article 

    Google Scholar 

  • 50.

    Sedlák, E. Řád Chrostíci—Trichoptera. In Klíč vodních larev hmyzu (ed. Rozkošný, R.) 163–220 (ČSAV, 1980).

    Google Scholar 

  • 51.

    Waringer, J. & Graf, W. Atlas of Central European Trichoptera Larvae: Atlas der Mitteleuropäischen Köcherfliegenlarven (Erik Mauch, 2011).

    Google Scholar 

  • 52.

    Casquet, J., Thebaud, C. & Gillespie, R. G. Chelex without boiling, a rapid and easy technique to obtain stable amplifiable DNA from small amounts of ethanol-stored spiders. Mol. Ecol. Resour. 12(1), 136–141. https://doi.org/10.1111/j.1755-0998.2011.03073.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3(5), 294–299 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Bálint, M., Botoşaneanu, L., Ujvárosi, L. & Popescu, O. Taxonomic revision of Rhyacophila aquitanica (Trichoptera: Rhyacophilidae), based on molecular and morphological evidence and change of taxon status of Rhyacophila aquitanica ssp. carpathica to Rhyacophila carpathica stat. n. Zootaxa 2148, 39–48. https://doi.org/10.11646/zootaxa.2148.1.3 (2009).

    Article 

    Google Scholar 

  • 55.

    Simon, C. et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87, 651–701 (1994).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797. https://doi.org/10.1093/nar/gkh340 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).

    CAS 
    Article 

    Google Scholar 

  • 58.

    Ratnasingham, S. & Hebert, P. D. N. The barcode of life data system. Mol. Ecol. Notes 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21(2), 609–620. https://doi.org/10.1111/1755-0998.13281 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 60.

    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).

    Article 

    Google Scholar 

  • 62.

    Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Bouckaert, R. R. & Drummond, A. J. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17(42), 1–11. https://doi.org/10.1186/s12862-017-0890-6 (2017).

    Article 

    Google Scholar 

  • 64.

    Brower, A. V. Z. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. PNAS 91(14), 6491–6495. https://doi.org/10.1073/pnas.91.14.6491 (1994).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67(5), 901–904. https://doi.org/10.1093/sysbio/syy032 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Miller, M. P. Alleles In Space (AIS): Computer software for the joint analysis of interindividual spatial and genetic information. J. Hered. 96, 722–724. https://doi.org/10.1093/jhered/esi119 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220 (1967).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    Article 
    PubMed 

    Google Scholar 

  • 69.

    Tajima, F. The effect of change in population size on DNA polymorphism. Genetics 123(3), 597–601 (1989).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147(2), 915–925 (1997).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Fu, Y. X. & Li, W. H. Statistical tests of neutrality of mutations. Genetics 14, 693–709 (1993).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Strategic Forest Reserves can protect biodiversity in the western United States and mitigate climate change

    New visions for better transportation