in

DNA-based taxonomy of a mangrove-associated community of fishes in Southeast Asia

  • 1.

    Levin, L. A. et al. The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, 430–451 (2001).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Sarathchandra, C. et al. Significance of mangrove biodiversity conservation in fishery production and living conditions of coastal communities in Sri Lanka. Diversity 10, 20 (2018).

    Article 

    Google Scholar 

  • 3.

    Brown, C. J. et al. The assessment of fishery status depends on fish habitats. Fish Fish. 20, 1–14 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Kathiresan, K. & Bingham, B. L. Biology of mangroves and mangrove ecosystems. Adv. Mar. Biol. 40, 84–254 (2001).

    Google Scholar 

  • 5.

    De La Morinière, E. C., Pollux, B., Nagelkerken, I. & Van der Velde, G. Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuar. Coast. Shelf Sci. 55, 309–321 (2002).

    ADS 
    Article 

    Google Scholar 

  • 6.

    Asaad, I., Lundquist, C. J., Erdmann, M. V. & Costello, M. J. Delineating priority areas for marine biodiversity conservation in the Coral Triangle. Biol. Conserv. 222, 198–211 (2018).

    Article 

    Google Scholar 

  • 7.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Chong, V. C., Lee, P. K. & Lau, C. M. Diversity, extinction risk and conservation of Malaysian fishes. J. Fish Biol. 76, 2009–2066. https://doi.org/10.1111/j.1095-8649.2010.02685.x (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Wong, S. L. Matang Mangroves: A Century of Sustainable Management (Sasyaz Holdings Private Ltd., Forestry Department Peninsular Malaysia, 2004).

    Google Scholar 

  • 10.

    Ong, J. et al. Hutan paya laut Merbok, Kedah: Pengurusan hutan, persekitaran fizikal dan kepelbagaian flora. In Siri Kepelbagaian Biologi Hutan Vol. 23 (eds Ku-Aman, K. A. et al.) 21–33 (Jabatan Perhutanan Semenanjung Malaysia, 2015).

    Google Scholar 

  • 11.

    Jamaluddin, J. A. F. et al. DNA barcoding of shrimps from a mangrove biodiversity hotspot. Mitochondrial DNA Part A 30, 618–625. https://doi.org/10.1080/24701394.2019.1597073 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Mansor, M., Mohammad-Zafrizal, M., Nur-Fadhilah, M., Khairun, Y. & Wan-Maznah, W. Temporal and spatial variations in fish assemblage structures in relation to the physicochemical parameters of the Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 110–127 (2012).

    Google Scholar 

  • 13.

    Hookham, B., Shau-Hwai, A. T., Dayrat, B. & Hintz, W. A baseline measure of tree and gastropod biodiversity in replanted and natural mangrove stands in Malaysia: Langkawi Island and Sungai Merbok. Trop. Life Sci. Res. 25, 1 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Mansor, M., Najamuddin, A., Mohammad-Zafrizal, M., Khairun, Y. & Siti-Azizah, M. Length-weight relationships of some important estuarine fish species from Merbok estuary, Kedah. J. Nat. Sci. Res. 2, 8–19 (2012).

    Google Scholar 

  • 15.

    Zainal Abidin, D. H. et al. Ichthyofauna of Sungai Merbok Mangrove Forest Reserve, northwest Peninsular Malaysia, and its adjacent marine waters. Check List 17, 601–631 (2021).

    Article 

    Google Scholar 

  • 16.

    Lim, H. C., Zainal Abidin, M., Pulungan, C. P., de Bruyn, M. & Mohd Nor, S. A. DNA barcoding reveals high cryptic diversity of the freshwater halfbeak genus Hemirhamphodon from Sundaland. PLoS ONE 11, e0163596 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Mennesson, M. I., Bonillo, C., Feunteun, E. & Keith, P. Phylogeography of Eleotris fusca (Teleostei: Gobioidei: Eleotridae) in the Indo-Pacific area reveals a cryptic species in the Indian Ocean. Conserv. Genet. 19, 1025–1038 (2018).

    Article 

    Google Scholar 

  • 18.

    Gomes, L. C., Pessali, T. C., Sales, N. G., Pompeu, P. S. & Carvalho, D. C. Integrative taxonomy detects cryptic and overlooked fish species in a neotropical river basin. Genetica 143, 581–588 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Iyiola, O. A. et al. DNA barcoding of economically important freshwater fish species from north-central Nigeria uncovers cryptic diversity. Ecol. Evol. 8, 6932–6951 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Stern, N., Rinkevich, B. & Goren, M. Integrative approach revises the frequently misidentified species of Sardinella (Clupeidae) of the Indo-West Pacific Ocean. J. Fish Biol. 89, 2282–2305 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Hebert, P. D., Ratnasingham, S. & De Waard, J. R. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, S96–S99 (2003).

    CAS 

    Google Scholar 

  • 22.

    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B Biol. Sci. 360, 1847–1857 (2005).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Xu, L. et al. Assessment of fish diversity in the South China Sea using DNA taxonomy. Fish. Res. 233, 105771 (2020).

    Article 

    Google Scholar 

  • 24.

    Lakra, W. et al. DNA barcoding Indian marine fishes. Mol. Ecol. Resour. 11, 60–71 (2011).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Hubert, N. et al. Cryptic diversity in Indo-Pacific coral-reef fishes revealed by DNA-barcoding provides new support to the centre-of-overlap hypothesis. PLoS ONE 7, e28987 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 26.

    Adibah, A. & Darlina, M. Is there a cryptic species of the golden snapper (Lutjanus johnii)?. Genet. Mol. Res. 13, 8094–8104 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Bakar, A. A. et al. DNA barcoding of Malaysian commercial snapper reveals an unrecognized species of the yellow-lined Lutjanus (Pisces: Lutjanidae). PLoS ONE 13, e0202945 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Farhana, S. N. et al. Exploring hidden diversity in Southeast Asia’s Dermogenys spp. (Beloniformes: Zenarchopteridae) through DNA barcoding. Sci. Rep. 8, 1–11 (2018).

    Google Scholar 

  • 29.

    Jaafar, T. N. A. M., Taylor, M. I., Nor, S. A. M., de Bruyn, M. & Carvalho, G. R. DNA barcoding reveals cryptic diversity within commercially exploited Indo-Malay Carangidae (Teleosteii: Perciformes). PLoS ONE 7, e49623 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 30.

    Azmir, I., Esa, Y., Amin, S., Salwany, M. & Zuraina, M. DNA barcoding analysis of larval fishes in Peninsular Malaysia. J. Environ. Biol. 41, 1295–1308 (2020).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Chu, C. et al. Using DNA barcodes to aid the identification of larval fishes in tropical estuarine waters (Malacca Straits, Malaysia). Zool. Stud. 58, e30 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Hubert, N., Delrieu-Trottin, E., Irisson, J.-O., Meyer, C. & Planes, S. Identifying coral reef fish larvae through DNA barcoding: A test case with the families Acanthuridae and Holocentridae. Mol. Phylogenet. Evol. 55, 1195–1203 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Ko, H.-L. et al. Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE 8, e53451 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Chin, T. C., Adibah, A., Hariz, Z. D. & Azizah, M. S. Detection of mislabelled seafood products in Malaysia by DNA barcoding: Improving transparency in food market. Food Control 64, 247–256 (2016).

    Article 
    CAS 

    Google Scholar 

  • 35.

    Hubert, N. et al. Identifying Canadian freshwater fishes through DNA barcodes. PLoS ONE 3, e2490 (2008).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Landi, M. et al. DNA barcoding for species assignment: The case of Mediterranean marine fishes. PLoS ONE 9, e106135 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Russell, D., Thuesen, P. & Thomson, F. A review of the biology, ecology, distribution and control of Mozambique tilapia, Oreochromis mossambicus (Peters 1852) (Pisces: Cichlidae) with particular emphasis on invasive Australian populations. Rev. Fish Biol. Fish. 22, 533–554 (2012).

    Article 

    Google Scholar 

  • 38.

    Hebert, P. D., Cywinska, A. & Ball, S. L. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321 (2003).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Meier, R., Zhang, G. & Ali, F. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Syst. Biol. 57, 809–813 (2008).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 41.

    Ortiz, D. & Francke, O. F. Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Mol. Phylogenet. Evol. 101, 176–193 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Hajibabaei, M., Singer, G. A., Hebert, P. D. & Hickey, D. A. DNA barcoding: How it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet. 23, 167–172 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Mecklenburg, C. W., Møller, P. R. & Steinke, D. Biodiversity of arctic marine fishes: taxonomy and zoogeography. Mar. Biodivers. 41, 109–140 (2011).

    Article 

    Google Scholar 

  • 44.

    Puckridge, M., Andreakis, N., Appleyard, S. A. & Ward, R. D. Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Mol. Ecol. Resour. 13, 32–42 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Thirumaraiselvi, R. & Thangaraj, M. Genetic diversity analysis of Indian Salmon, Eleutheronema tetradactylum from South Asian countries based on mitochondrial COI gene sequences. Not. Sci. Biol. 7, 417–422 (2015).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Delrieu-Trottin, E. et al. Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the Indo-Australian Archipelago through the iterative use of DNA-based species delimitation and specimen assignment methods. Evol. Appl. 13, 1451–1467 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Durand, J.-D., Hubert, N., Shen, K.-N. & Borsa, P. DNA barcoding grey mullets. Rev. Fish Biol. Fish. 27, 233–243 (2017).

    Article 

    Google Scholar 

  • 48.

    Alavi-Yeganeh, M. S., Khajavi, M. & Kimura, S. A new ponyfish, Deveximentum mekranensis (Teleostei: Leiognathidae), from the Gulf of Oman. Ichthyol. Res. 68, 437–444. https://doi.org/10.1007/s10228-020-00794-y (2021).

    Article 

    Google Scholar 

  • 49.

    Carpenter, K. E. & Niem, V. FAO Species Identification Guide for Fishery Purposes. The Living Marine Resources of the Western Central Pacific. Bony Fishes Part 4 (Labridae to Latimeriidae), Estuarine Crocodiles, Sea Turtles, Sea Snakes and Marine Mammals Vol. 6 (FAO Library, 2001).

    Google Scholar 

  • 50.

    Chen, W., Ma, X., Shen, Y., Mao, Y. & He, S. The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Sci. Rep. 5, 1–12 (2015).

    Google Scholar 

  • 51.

    Guimarães-Costa, A. J. et al. Fish diversity of the largest deltaic formation in the Americas-a description of the fish fauna of the Parnaíba Delta using DNA Barcoding. Sci. Rep. 9, 1–8 (2019).

    Article 
    CAS 

    Google Scholar 

  • 52.

    Hupało, K. et al. An urban Blitz with a twist: Rapid biodiversity assessment using aquatic environmental DNA. Environ. DNA 3, 200–213 (2020).

    Article 

    Google Scholar 

  • 53.

    Zainal Abidin, D. H. & Noor Adelyna, M. A. Universities as Living Labs for Sustainable Development 211–225 (Springer, 2020).

    Google Scholar 

  • 54.

    Ratnasingham, S. & Hebert, P. D. BOLD: The barcode of life data system. Mol. Ecol. Notes 7, 355–364 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Benson, D. A. et al. GenBank. Nucleic Acids Res. 46, D41–D47 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Mansor, M. I. et al. Field Guide to Important Commercial Marine Fishes of the South China Sea (SEAFDEC/MFRDMD, 1998).

    Google Scholar 

  • 57.

    Nuruddin, A. A. & Isa, S. M. Trawl Fisheries in Malaysia-Issues, Challenges and Mitigating Measures (Fisheries Research Institute, Department of Fisheries Malaysia, 2013).

    Google Scholar 

  • 58.

    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 59.

    Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 60.

    Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 61.

    Edler, D., Klein, J., Antonelli, A. & Silvestro, D. raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods Ecol. Evol. 12, 373–377 (2021).

    Article 

    Google Scholar 

  • 62.

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Miller, M. A., Pfeiffer, W. & Schwartz, T. In Proceedings of the 2011 TeraGrid Conference: Extreme digital discovery 1–8 (2011).

  • 64.

    Rambaut, A. FigTree v1.4.4. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (2018).

  • 65.

    Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55, 595–609 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Glez-Pena, D., Gomez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F. & Posada, D. ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 38, W14–W18 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Team, R. RStudio: integrated development for R (RStudio Inc., 2015).

    Google Scholar 

  • 69.

    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Whole genome sequences reveal the Xanthomonas perforans population is shaped by the tomato production system

    Making catalytic surfaces more active to help decarbonize fuels and chemicals