in

DNA metabarcoding reveals the dietary composition in the endangered black-faced spoonbill

  • 1.

    Beauchamp, G. Long-distance migrating species of birds travel in larger groups. Biol. Lett. 7, 692–694 (2011).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Watts, H. E., Cornelius, J. M., Fudickar, A. M., Pérez, J. & Ramenofsky, M. Understanding variation in migratory movements: A mechanistic approach. Gen. Comp. Endocrinol. 256, 112–122 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 3.

    Amezaga, J. M., Santamaría, L. & Green, A. J. Biotic wetland connectivity—Supporting a new approach for wetland policy. Acta Oecol. 23, 213–222 (2002).

    ADS 
    Article 

    Google Scholar 

  • 4.

    O’Connell, M. Threats to waterbirds and wetlands: Implications for conservation, inventory and research. Wildfowl 51, 1–16 (2000).

    Google Scholar 

  • 5.

    Darrah, S. E. et al. Improvements to the wetland extent trends (WET) index as a tool for monitoring natural and human-made wetlands. Ecol. Ind. 99, 294–298 (2019).

    Article 

    Google Scholar 

  • 6.

    BirdLife International. Waterbirds are Showing Widespread Declines, Particularly in Asia. http://www.birdlife.org (2017).

  • 7.

    Maron, M. et al. The many meanings of no net loss in environmental policy. Nat. Sustain. 1, 19–27 (2018).

    Article 

    Google Scholar 

  • 8.

    He, Q. Conservation: ‘No net loss’ of wetland quantity and quality. Curr. Biol. 29, R1070–R1072 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Mander, L., Marie-Orleach, L. & Elliott, M. The value of wader foraging behaviour study to assess the success of restored intertidal areas. Estuar. Coast. Shelf Sci. 131, 1–5 (2013).

    ADS 
    Article 

    Google Scholar 

  • 10.

    Choi, C., Gan, X., Hua, N., Wang, Y. & Ma, Z. The habitat use and home range analysis of Dunlin (Calidris alpina) in Chongming Dongtan, China and their conservation implications. Wetlands 34, 255–266 (2014).

    Article 

    Google Scholar 

  • 11.

    Xia, S. et al. Identifying priority sites and gaps for the conservation of migratory waterbirds in China’s coastal wetlands. Biol. Cons. 210, 72–82 (2017).

    Article 

    Google Scholar 

  • 12.

    Ramsar Sites Information Service. Mai Po Marshes and Inner Deep Bay. https://rsis.ramsar.org/ris/750 (2021).

  • 13.

    Environment Bureau. Hong Kong Biodiversity Strategy Action Plan 2016–2021 (The Government of the Hong Kong Special Administrative Region, 2016).

    Google Scholar 

  • 14.

    Sung, Y. H., Tse, I. W. L. & Yu, Y. T. Population trends of the Black-faced Spoonbill Platalea minor: Analysis of data from international synchronised censuses. Bird Conserv. Int. 28, 157–167. https://doi.org/10.1017/s0959270917000016 (2017).

    Article 

    Google Scholar 

  • 15.

    Wei, P. et al. Impact of habitat management on waterbirds in a degraded coastal wetland. Mar. Pollut. Bull. 124, 645–652 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 16.

    Cheung, S. C. The politics of wetlandscape: Fishery heritage and natural conservation in Hong Kong. Int. J. Herit. Stud. 17, 36–45 (2011).

    Article 

    Google Scholar 

  • 17.

    AFCD. Agriculture, Fisheries and Conservation Department (AFCD). Marine Fish Culture, Pond Fish Culture and Oyster Culture. https://www.afcd.gov.hk/english/fisheries/fish_aqu/fish_aqu_mpo/fish_aqu_mpo.html.

  • 18.

    Yu, Y. T., Li, C. H., Tse, I. W. L. & Fong, H. N. F. International Black-Faced Spoonbill Census 2019 (The Hong Kong Bird Watching Society, 2019).

    Google Scholar 

  • 19.

    Pickett, E. J. et al. Cryptic and cumulative impacts on the wintering habitat of the endangered black-faced spoonbill (Platalea minor) risk its long-term viability. Environ. Conserv. 45, 147–154. https://doi.org/10.1017/s0376892917000340 (2018).

    Article 

    Google Scholar 

  • 20.

    The Hong Kong Bird Watching Society. Black-Faced Spoonbill Population Hits Record High. Number in HK Continues to Decline. Protection of Deep Bay in Urgent Need. https://cms.hkbws.org.hk/cms/ (2020).

  • 21.

    Swennen, C. & Yu, Y. T. Food and feeding behavior of the black-faced spoonbill. Waterbirds 28, 19–27. https://doi.org/10.1675/1524-4695(2005)028[0019:Fafbot]2.0.Co;2 (2005).

    Article 

    Google Scholar 

  • 22.

    Nichols, R. V., Åkesson, M. & Kjellander, P. Diet assessment based on rumen contents: A comparison between DNA metabarcoding and macroscopy. PLoS ONE 11, e0157977 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 23.

    Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C. & Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 21, 2045–2050 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Elbrecht, V., Vamos, E. E., Meissner, K., Aroviita, J. & Leese, F. Assessing strengths and weaknesses of DNA metabarcoding-based macroinvertebrate identification for routine stream monitoring. Methods Ecol. Evol. 8, 1265–1275 (2017).

    Article 

    Google Scholar 

  • 25.

    McInnes, J. C. et al. Optimised scat collection protocols for dietary DNA metabarcoding in vertebrates. Methods Ecol. Evol. 8, 192–202 (2017).

    Article 

    Google Scholar 

  • 26.

    Thuo, D. et al. Food from faeces: Evaluating the efficacy of scat DNA metabarcoding in dietary analyses. PLoS ONE 14, e0225805 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 27.

    De Sousa, L., Silva, S. M. & Xavier, R. DNA metabarcoding in diet studies: Unveiling ecological aspects in aquatic and terrestrial ecosystem. Environ. DNA 1, 199–214 (2019).

    Article 

    Google Scholar 

  • 28.

    Ueng, Y. T., Perng, J. J., Wang, J. P., Weng, J. H. & Hou, P. C. Diet of the black-faced spoonbill wintering at Chiku Wetland in Southwestern Taiwan. Waterbirds 29, 185–191 (2006).

    Article 

    Google Scholar 

  • 29.

    Veen, J., Overdijk, O. & Veen, T. The diet of an endemic subspecies of the Eurasian Spoonbill Platalea leucorodia balsaci, breeding at the Banc d’Arguin, Mauritania. Ardea 100, 123–130 (2012).

    Article 

    Google Scholar 

  • 30.

    Lee, S. Y. The Mangrove Ecosystem of Deep Bay and the Mai Po Marshes, Hong Kong (Hong Kong University Press, 1999).

    Google Scholar 

  • 31.

    Wong, L. C., Corlett, R. T., Young, L. & Lee, J. S. Comparative feeding ecology of Little Egrets on intertidal mudflats in Hong Kong, South China. Waterbirds 23, 214–225 (2000).

    Google Scholar 

  • 32.

    Yang, K. Y., Lee, S. Y. & Williams, G. A. Selective feeding by the mudskipper (Boleophthalmus pectinirostris) on the microalgal assemblage of a tropical mudflat. Mar. Biol. 143, 245–256 (2003).

    Article 

    Google Scholar 

  • 33.

    Froese, R., Pauly, D. & eds. FishBase. World Wide Web Electronic Publication. https://www.fishbase.org, version 12/2019 (2019).

  • 34.

    Aguilera, E., Ramo, C. & de le Court, C. Food and feeding sites of the Eurasian spoonbill (Platalea leucorodia) in southwestern Spain. Colon. Waterbirds 19, 159–166 (1996).

    Article 

    Google Scholar 

  • 35.

    Yu, Y. T. & Swennen, C. K. Habitat use of the black-faced spoonbill. Waterbirds 27, 129–135 (2004).

    Article 

    Google Scholar 

  • 36.

    World Wide Fund Hong Kong. Mai Po Nature Reserve Habitat Management, Monitoring and Research Plan 2013–2018 (World Wide Fund Hong Kong, 2013).

    Google Scholar 

  • 37.

    Sazima, I. Waterbirds catch and release a poisonous fish at a mudflat in southeastern Australia. Ornithol. Res. 27, 126–128 (2019).

    Article 

    Google Scholar 

  • 38.

    Marchetti, K. & Price, T. Differences in the foraging of juvenile and adult birds: The importance of developmental constraints. Biol. Rev. 64, 51–70 (1989).

    Article 

    Google Scholar 

  • 39.

    Jiguet, F. Arthropods in diet of Little Bustards Tetrax tetrax during the breeding season in western France. Bird Study 49, 105–109 (2002).

    Article 

    Google Scholar 

  • 40.

    Birks, J. D. S. & Dunstone, N. Sex-related differences in the diet of the mink Mustela vison. Ecography 8, 245–252 (1985).

    Article 

    Google Scholar 

  • 41.

    Mata, V. A. et al. Female dietary bias towards large migratory moths in the European free-tailed bat (Tadarida teniotis). Biol. Lett. 12, 20150988 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 42.

    Carreiro, A. R. et al. Metabarcoding, stables isotopes, and tracking: Unraveling the trophic ecology of a winter-breeding storm petrel (Hydrobates castro) with a multimethod approach. Mar. Biol. 167, 14 (2020).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Rose, L. M. Sex differences in diet and foraging behavior in white-faced capuchins (Cebus capucinus). Int. J. Primatol. 15, 95–114 (1994).

    Article 

    Google Scholar 

  • 44.

    Beeston, R., Baines, D. & Richardson, M. Seasonal and between-sex differences in the diet of Black Grouse Tetrao tetrix. Bird Study 52, 276–281 (2005).

    Article 

    Google Scholar 

  • 45.

    Durell, S. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).

    Article 

    Google Scholar 

  • 46.

    Faegre, S. K., Nietmann, L., Hannon, P., Ha, J. C. & Ha, R. R. Age-related differences in diet and foraging behavior of the critically endangered Mariana Crow (Corvus kubaryi), with notes on the predation of Coenobita hermit crabs. J. Ornithol. 161, 149–158 (2020).

    Article 

    Google Scholar 

  • 47.

    Dunn, E. K. Effect of age on the fishing ability of sandwich terns Sterna sandvicensis. Ibis 114, 360–366 (1972).

    Article 

    Google Scholar 

  • 48.

    Watson, M. J. & Hatch, J. J. Differences in foraging performance between juvenile and adult roseate terns at a pre-migratory staging area. Waterbirds 22, 463–465 (1999).

    Article 

    Google Scholar 

  • 49.

    AEC Limited. Ecological Monitoring and Adaptive Management Advice Services for Lok Ma Chau and West Rail Wetlands. Lok Ma Chau Habitat Creation and Management Plan (AEC Limited, 2019).

    Google Scholar 

  • 50.

    The Hong Kong Bird Watching Society. Hong Kong Fishpond Conservation Scheme Project. https://cms.hkbws.org.hk/cms/ (2020).

  • 51.

    Miya, M. et al. MiFish, a set of universal PCR primers for metabarcoding environmental DNA from fishes: Detection of more than 230 subtropical marine species. R. Soc. Open Sci. 2, 150088 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Edgar, R. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461. https://doi.org/10.1093/bioinformatics/btq461 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10–12. https://doi.org/10.14806/ej.17.1.200 (2011).

    Article 

    Google Scholar 

  • 54.

    Andrews, S., Krueger, F. & Segonds-Pichon, A. FastQC a Quality Control Tool for High Throughput Sequence Data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

  • 55.

    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahe, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584. https://doi.org/10.7717/peerj.2584 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics (Oxford, England) 31, 3476–3482. https://doi.org/10.1093/bioinformatics/btv401 (2015).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing. BioRxiv https://doi.org/10.1101/081257 (2016).

    Article 

    Google Scholar 

  • 58.

    Edgar, R. SINTAX: A simple non-Bayesian taxonomy classifier for 16S and ITS sequences. BioRxiv https://doi.org/10.1101/074161 (2016).

    Article 

    Google Scholar 

  • 59.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Machida, R. J., Leray, M., Ho, S. L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027. https://doi.org/10.1038/sdata.2017.27 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Sato, K., Miya, M., Fukunaga, T., Sado, T. & Iwasaki, W. MitoFish and MiFish pipeline: A mitochondrial genome database of fish with an analysis pipeline for environmental DNA metabarcoding. Mol. Biol. Evol. 35, 1553–1555 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596. https://doi.org/10.1093/nar/gks1219 (2013).

    CAS 
    Article 

    Google Scholar 

  • 63.

    Kahlke, T. & Ralph, P. J. BASTA—Taxonomic classification of sequences and sequence bins using last common ancestor estimations. Methods Ecol. Evol. 10, 100–103. https://doi.org/10.1111/2041-210X.13095 (2019).

    Article 

    Google Scholar 

  • 64.

    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406. https://doi.org/10.1111/mec.14734 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 65.

    Lahti, L. & Shetty, S. Microbiome R Package Version 1.6.0. http://microbiome.github.io (2012).

  • 66.

    Oksanen, J. et al. vegan: Community Ecology Package Version 2.5–6. https://cran.r-project.org, https://github.com/vegandevs/vegan (2019).

  • 67.

    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Martinez-Arbizu, P. pairwiseAdonis: Pairwise Multilevel Comparison Using Adonis. R Package Version 0.3. https://github.com/pmartinezarbizu/pairwiseAdonis (2019).

  • 69.

    Steinberger, A. J. Asteinberger9/seq_scripts: Release v1. https://github.com/asteinberger9/seq_scripts (2018).

  • 70.

    ArcGIS. ArcGIS Version 10.7. https://desktop.arcgis.com/en/arcmap/ (2020).


  • Source: Ecology - nature.com

    Crossing disciplines, adding fresh eyes to nuclear engineering

    Predicting building emissions across the US