Holmes, R. M. et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the arctic ocean and surrounding seas. Estuaries Coasts 35(2), 369–382 (2011).
Google Scholar
Peterson, B.J., Holmes, R.M., McClelland, J.W., Vörösmarty, C.J., Lammers, R.B., Shiklomanov, A. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171-2173 (2002).
McClelland, J.W., Déry, S.J., Peterson, B.J., Holmes, R.M., Wood, E.F. A pan-arctic evaluation of changes in river discharge during the latter half of the 20th century. Geophys. Res. Lett. 33(6), (2006).
Spencer, R. G. M. et al. Detecting the signature of permafrost thaw in Arctic rivers. Geophys. Res. Lett. 42(8), 2830–2835 (2015).
Google Scholar
O’Donnell, J. A. et al. Dissolved organic matter composition of Arctic rivers: Linking permafrost and parent material to riverine carbon. Glob. Biogeochem. Cycles 30(12), 1811–1826 (2016).
Google Scholar
Kirchman, D. L., Malmstrom, R. R. & Cottrell, M. T. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep Sea Res. Part II 52(24–26), 3386–3395 (2005).
Google Scholar
Mann, P.J., Davydova, A., Zimov, N., Spencer, R.G.M., Davydov, S., Bulygina, E. et al. Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J. Geophys. Res. Biogeosci. 117(G1), (2012).
Crump, B. C., Kling, G. W., Bahr, M. & Hobbie, J. E. Bacterioplankton community shifts in an arctic lake correlate with seasonal changes in organic matter source. Appl. Environ. Microbiol. 69(4), 2253–2268 (2003).
Google Scholar
Docherty, K. M., Young, K. C., Maurice, P. A. & Bridgham, S. D. Dissolved organic matter concentration and quality influences upon structure and function of freshwater microbial communities. Microb. Ecol. 52(3), 378–388 (2006).
Google Scholar
Elifantz, H., Malmstrom, R. R., Cottrell, M. T. & Kirchman, D. L. Assimilation of polysaccharides and glucose by major bacterial groups in the Delaware Estuary. Appl. Environ. Microbiol. 71(12), 7799–7805 (2005).
Google Scholar
Nalven, S. G. et al. Experimental metatranscriptomics reveals the costs and benefits of dissolved organic matter photo-alteration for freshwater microbes. Environ. Microbiol. 22(8), 3505–3521 (2020).
Google Scholar
Ward, C. P. & Cory, R. M. Complete and partial photo-oxidation of dissolved organic matter draining permafrost soils. Environ. Sci. Technol. 50(7), 3545–3553 (2016).
Google Scholar
Ward, C. P., Nalven, S. G., Crump, B. C., Kling, G. W. & Cory, R. M. Photochemical alteration of organic carbon draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat. Commun. 8(1), 772 (2017).
Google Scholar
Kaiser, K., Canedo-Oropeza, M., McMahon, R. & Amon, R. M. W. Origins and transformations of dissolved organic matter in large Arctic rivers. Sci. Rep. 7(1), 13064 (2017).
Google Scholar
Soares, A. R. A., Lapierre, J. F., Selvam, B. P., Lindstrom, G. & Berggren, M. Controls on dissolved organic carbon bioreactivity in river systems. Sci. Rep. 9(1), 14897 (2019).
Google Scholar
Pegau, W.S. Inherent optical properties of the central Arctic surface waters. J. Geophys. Res. Oceans, 107(C10), SHE-16 (2002).
Kim, G. E., Pradal, M.-A. & Gnanadesikan, A. Increased surface ocean heating by colored detrital matter (CDM) linked to greater Northern Hemisphere ice formation in the GFDL CM2Mc ESM. J. Clim. 29(24), 9063–9076 (2016).
Google Scholar
Laglera, L. M. et al. First quantification of the controlling role of Humic substances in the transport of iron across the surface of the Arctic Ocean. Environ. Sci. Technol. 53(22), 13136–13145 (2019).
Google Scholar
Charette, M.A., Kipp, L.E., Jensen, L.T., Dabrowski, J.S., Whitmore, L.M., Fitzsimmons, J.N. et al. The transpolar drift as a source of riverine and shelf‐derived trace elements to the Central Arctic Ocean. J. Geophys. Res. Oceans 125(5), (2020). https://doi.org/10.1029/2019JC015920.
Amon, R. M. W. et al. Dissolved organic matter sources in large Arctic rivers. Geochim. Cosmochim. Acta 94, 217–237 (2012).
Google Scholar
Spencer, R.G.M., Aiken, G.R., Wickland, K.P., Striegl, R.G., Hernes, P.J. Seasonal and spatial variability in dissolved organic matter quantity and composition from the Yukon River basin, Alaska. Glob. Biogeochem. Cycles 22(4), (2008).
Mann, P.J., Spencer, R.G.M., Hernes, P.J., Six, J., Aiken, G.R., Tank, S.E., et al. Pan-Arctic trends in terrestrial dissolved organic matter from optical measurements. Front. Earth Sci. 4(25), (2016).
Hernes, P. J. & Benner, R. Terrigenous organic matter sources and reactivity in the North Atlantic Ocean and a comparison to the Arctic and Pacific oceans. Mar. Chem. 100(1–2), 66–79 (2006).
Google Scholar
Catalá, T.S., Reche, I., Fuentes-Lema, A., Romera-Castillo, C., Nieto-Cid, M., Ortega-Retuerta, E., et al. Turnover time of fluorescent dissolved organic matter in the dark global ocean. Nature communications 6(1), 1–9 (2015).
Colatriano, D., Tran, P.Q., Guéguen, C., Williams, W.J., Lovejoy, C., Walsh, D.A. Genomic evidence for the degradation of terrestrial organic matter by pelagic Arctic Ocean Chloroflexi bacteria. Commun. Biol. 1(1), 1–9 (2018).
Müller, O., Seuthe, L., Bratbak, G., Paulsen, M.L. Bacterial response to permafrost derived organic matter input in an Arctic Fjord. Front. Mar. Sci. 5(263), (2018).
Kujawinski, E.B., Longnecker, K., Barott, K.L., Weber, R.J.M., Kido Soule, M.C. Microbial community structure affects marine dissolved organic matter composition. Front. Mar. Sci. 3(45), (2016).
Avila, M. P. et al. Linking shifts in bacterial community with changes in dissolved organic matter pool in a tropical lake. Sci. Total Environ. 672, 990–1003 (2019).
Google Scholar
Elifantz, H., Dittel, A. I., Cottrell, M. T. & Kirchman, D. L. Dissolved organic matter assimilation by heterotrophic bacterial groups in the western Arctic Ocean. Aquat. Microb. Ecol. 50, 39–49 (2007).
Google Scholar
Lee, J. et al. Latitudinal distributions and controls of bacterial community composition during the summer of 2017 in Western Arctic Surface Waters (from the Bering Strait to the Chukchi Borderland). Sci. Rep. 9(1), 16822 (2019).
Google Scholar
Fortunato, C. S. & Crump, B. C. Bacterioplankton community variation across river to ocean environmental gradients. Microb. Ecol. 62(2), 374–382 (2011).
Google Scholar
Balmonte, J. P. et al. Sharp contrasts between freshwater and marine microbial enzymatic capabilities, community composition, and DOM pools in a NE Greenland fjord. Limnol. Oceanogr. 65(1), 77–95 (2020).
Google Scholar
Sipler, R. E. et al. Microbial community response to terrestrially derived dissolved organic matter in the Coastal Arctic. Front. Microbiol. 8, 1018 (2017).
Google Scholar
Scully, N. M., Cooper, W. J. & Tranvik, L. J. Photochemical effects on microbial activity in natural waters: the interaction of reactive oxygen species and dissolved organic matter. FEMS Microbiol. Ecol. 46(3), 353–357 (2003).
Google Scholar
Bélanger, S., Xie, H., Krotkov, N., Larouche, P., Vincent, W.F., Babin, M. Photomineralization of terrigenous dissolved organic matter in Arctic coastal waters from 1979 to 2003: Interannual variability and implications of climate change. Glob. Biogeochem. Cycles 20(4), (2006).
Timko, S.A., Maydanov, A., Pittelli, S.L., Conte, M.H., Cooper, W.J., Koch, B.P. et al. Depth-dependent photodegradation of marine dissolved organic matter. Front. Mar. Sci. 2(66) (2015).
Pisani, O., Yamashita, Y. & Jaffe, R. Photo-dissolution of flocculent, detrital material in aquatic environments: contributions to the dissolved organic matter pool. Water Res. 45(13), 3836–3844 (2011).
Google Scholar
Coble, P. G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar. Chem. 51, 325–346 (1996).
Google Scholar
Kothawala, D. N. et al. Controls of dissolved organic matter quality: Evidence from a large-scale boreal lake survey. Glob. Chang Biol. 20(4), 1101–1114 (2014).
Google Scholar
Paerl, R. W., Claudio, I. M., Shields, M. R., Bianchi, T. S. & Osburn, C. L. Dityrosine formation via reactive oxygen consumption yields increasingly recalcitrant humic-like fluorescent organic matter in the ocean. Limnol. Oceanogr. Lett. 5(5), 337–345 (2020).
Google Scholar
Spencer, R.G.M., Aiken, G.R., Butler, K.D., Dornblaser, M.M., Striegl, R.G., Hernes, P.J. Utilizing chromophoric dissolved organic matter measurements to derive export and reactivity of dissolved organic carbon exported to the Arctic Ocean: A case study of the Yukon River, Alaska. Geophys. Res. Lett. 36(6), (2009).
Maie, N., Scully, N. M., Pisani, O. & Jaffe, R. Composition of a protein-like fluorophore of dissolved organic matter in coastal wetland and estuarine ecosystems. Water Res. 41(3), 563–570 (2007).
Google Scholar
Hernes, P.J., Bergamaschi, B.A., Eckard, R.S., Spencer, R.G.M. Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J. Geophys. Res. 114(G4) (2009).
Murphy, K. R., Stedmon, C. A., Wenig, P. & Bro, R. OpenFluor—An online spectral library of auto-fluorescence by organic compounds in the environment. Anal. Methods 6(3), 658–661 (2014).
Google Scholar
Lanzalunga, O. & Bietti, M. Photo- and radiation chemical induced degradation of lignin model compounds. J. Photochem. Photobiol. B 56(2–3), 85–108 (2000).
Google Scholar
Brym, A. et al. Optical and chemical characterization of base-extracted particulate organic matter in coastal marine environments. Mar. Chem. 162, 96–113 (2014).
Google Scholar
Tanentzap, A. J. et al. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc. Natl. Acad. Sci. USA 116(49), 24689–24695 (2019).
Google Scholar
Jørgensen, L., Stedmon, C. A., Granskog, M. A. & Middelboe, M. Tracing the long-term microbial production of recalcitrant fluorescent dissolved organic matter in seawater. Geophys. Res. Lett. 41(7), 2481–2488 (2014).
Google Scholar
McDonald, N., Achterberg, E.P., Carlson, C.A., Gledhill, M., Liu, S., Matheson-Barker, J.R. et al. The role of heterotrophic bacteria and archaea in the transformation of lignin in the open ocean. Front. Mar. Sci. 6(743), (2019).
Zark, M. & Dittmar, T. Universal molecular structures in natural dissolved organic matter. Nat. Commun. 9(1), 3178 (2018).
Google Scholar
Harfmann, J. L. et al. Convergence of terrestrial dissolved organic matter composition and the role of microbial buffering in aquatic ecosystems. J. Geophys. Res. Biogeosci. 124(10), 3125–3142 (2019).
Google Scholar
Wünsch, U. J., Bro, R., Stedmon, C. A., Wenig, P. & Murphy, K. R. Emerging patterns in the global distribution of dissolved organic matter fluorescence. Anal. Methods 11(7), 888–893 (2019).
Google Scholar
Fitch, A., Orland, C., Willer, D., Emilson, E. J. S. & Tanentzap, A. J. Feasting on terrestrial organic matter: Dining in a dark lake changes microbial decomposition. Glob. Chang Biol. 24(11), 5110–5122 (2018).
Google Scholar
Saw, J.H.W., Nunoura, T., Hirai, M., Takaki, Y., Parsons, R., Michelsen, M. et al. Pangenomics analysis reveals diversification of enzyme families and niche specialization in globally abundant SAR202 bacteria. mBio 11(1), (2020).
Min, D. W. et al. Abiotic formation of humic-like substances through freezing-accelerated reaction of phenolic compounds and nitrite. Environ. Sci. Technol. 53(13), 7410–7418 (2019).
Google Scholar
Dagley, S. & Gibson, D. The bacterial degradation of catechol. Biochem. J. 95(2), 466–474 (1965).
Google Scholar
Kraepiel, A. M., Bellenger, J. P., Wichard, T. & Morel, F. M. Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22(4), 573–581 (2009).
Google Scholar
Stedmon, C. A. & Markager, S. Behaviour of the optical properties of coloured dissolved organic matter under conservative mixing. Estuar. Coast. Shelf Sci. 57(5–6), 973–979 (2003).
Google Scholar
Servais, P., Courties, C., Lebaron, P. & Troussellier, M. Coupling bacterial activity measurements with cell sorting by flow cytometry. Microb. Ecol. 38(2), 180–189 (1999).
Google Scholar
Newton, R. J. & Shade, A. Lifestyles of rarity: Understanding heterotrophic strategies to inform the ecology of the microbial rare biosphere. Aquat. Microb. Ecol. 78(1), 51–63 (2016).
Google Scholar
Amado, A. M., Cotner, J. B., Cory, R. M., Edhlund, B. L. & McNeill, K. Disentangling the interactions between photochemical and bacterial degradation of dissolved organic matter: Amino acids play a central role. Microb. Ecol. 69(3), 554–566 (2015).
Google Scholar
Mestre, M., Borrull, E., Sala, M. & Gasol, J. M. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 11(4), 999–1010 (2017).
Google Scholar
Gundersen, K., Bratbak, G., Heldal, M. Factors influencing the loss of bacteria in preserved seawater samples. Marine ecology progress
series 137, 305–310 (1996).
Logozzo, L., Tzortziou, M., Neale, P., Clark, B. Photochemical and microbial degradation of chromophoric dissolved organic matter exported from tidal marshes. J. Geophys. Res. Biogeosci. 126, e2020JG005744. https://doi.org/10.1029/2020JG005744(2021).
Tzortziou, M. et al. Tidal marshes as a source of optically and chemically distinctive colored dissolved organic matter in the Chesapeake Bay. Limnol. Oceanogr. 53(1), 148–159 (2008).
Google Scholar
Grunert B. bricegrunert/cdom: Version 1 (Version v1.0). 2020, December 23 (ed: Zenodo). https://doi.org/10.5281/zenodo.4391097
Green, S. A. & Blough, N. V. Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol. Oceanogr. 39(8), 1903–1916 (1994).
Google Scholar
Weishaar, J. L. et al. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 37(20), 4702–4708 (2003).
Google Scholar
Andersen, C. M. & Bro, R. Practical aspects of PARAFAC modeling of fluorescence excitation-emission data. J. Chemom. 17(4), 200–215 (2003).
Google Scholar
Bahram, M., Bro, R., Stedmon, C. & Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. J. Chemom. 20(3–4), 99–105 (2006).
Google Scholar
Murphy, K.R., Stedmon, C.A., Graeber, D., Bro, R. Fluorescence spectroscopy and multi-way techniques. PARAFAC. Anal. Methods 5(23), 6557-6566 (2013).
Source: Ecology - nature.com