in

Drivers of seedling establishment success in dryland restoration efforts

  • 1.

    Hobbs, R. J. et al. Restoration ecology: the challenge of social values and expectations. Front. Ecol. Environ. 2, 43–38 (2004).

    Article 

    Google Scholar 

  • 2.

    Harris, J. A., Hobbs, R. J., Higgs, E. & Aronson, J. C. Ecological restoration and global climate change. Restor. Ecol. 14, 170–176 (2006).

  • 3.

    Aronson, J. C. & Vallejo, R. in Restoration Ecology: The New Frontier (eds. van Andel, J. & Aronson, J. C.) (John Wiley & Sons, 2009).

  • 4.

    Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).

  • 6.

    Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).

    Article 

    Google Scholar 

  • 7.

    Drylands and Land Degradation (IUCN, 2017).

  • 8.

    Bainbridge, D. A. A Guide for Desert and Dryland Restoration: New Hope for Arid Lands (Island Press, 2012).

  • 9.

    Millennium Ecosystem Assessment Findings (Millennium Ecosystem Assessment, 2005).

  • 10.

    Reynolds, J. F., Maestre, F. T., Kemp, P. R., Stafford-Smith, D. M. & Lambin, E. in Terrestrial Ecosystems in a Changing World (eds. Canadell, J. G., Pataki, D. E. & Pitelka, L. F.) 247–257 (Springer, 2007); https://doi.org/10.1007/978-3-540-32730-1_20

  • 11.

    Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).

    Article 

    Google Scholar 

  • 12.

    Hardegree, S. P., Jones, T. A., Roundy, B. A., Shaw, N. L. & Monaco, T. A. in Conservation Benefits of Rangeland Practices 171–213 (United States Department of Agriculture, 2011).

  • 13.

    James, J. J., Svejcar, T. J. & Rinella, M. J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 48, 961–969 (2011).

    Article 

    Google Scholar 

  • 14.

    Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).

    Article 

    Google Scholar 

  • 15.

    Svejcar, L. N. & Kildisheva, O. A. The age of restoration: challenges presented by dryland systems. Plant Ecol. 218, 1–6 (2017).

    Article 

    Google Scholar 

  • 16.

    Safriel, U. et al. Dryland Systems. Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group 623–662 (Millennium Ecosystem Assessment, 2005).

  • 17.

    Ward, D. The Biology of Deserts (Oxford Univ. Press, 2016).

  • 18.

    Li, Y., Chen, Y. & Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Glob. Planet. Change 178, 184–192 (2019).

    Article 

    Google Scholar 

  • 19.

    Prăvălie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).

    Article 

    Google Scholar 

  • 20.

    Yao, J. et al. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 11, 1665 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Aridity Zones and Dryland Populations: An Assessment of Population Levels in the World’s Drylands with Reference to Africa (UNSO/UNDP, 1997); http://digitallibrary.un.org/record/432312

  • 22.

    van den Berg, L. & Kellner, K. Restoring degraded patches in a semi-arid rangeland of South Africa. J. Arid. Environ. 61, 497–511 (2005).

    Article 

    Google Scholar 

  • 23.

    Valkó, O. et al. Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. Nat. Conserv. 24, 65–80 (2018).

    Article 

    Google Scholar 

  • 24.

    Louhaichi, M., Clifton, K. & Hassan, S. Direct seeding of Salsola vermiculata for rehabilitation of degraded arid and semi-arid rangelands. Range Manag. Agrofor. 35, 182–187 (2014).

    Google Scholar 

  • 25.

    Pérez, D. R., González, F., Ceballos, C., Oneto, M. E. & Aronson, J. Direct seeding and outplantings in drylands of Argentinean Patagonia: estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 27, 1105–1116 (2019).

    Article 

    Google Scholar 

  • 26.

    Kiehl, K., Kirmer, A., Donath, T. W., Rasran, L. & Hölzel, N. Species introduction in restoration projects: evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 11, 285–299 (2010).

    Article 

    Google Scholar 

  • 27.

    Miguel, M. F., Butterfield, H. S. & Lortie, C. J. A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. PeerJ 8, e10428 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Kildisheva, O. A., Erickson, T. E., Merritt, D. J. & Dixon, K. W. Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. Restor. Ecol. 24, S36–S42 (2016).

    Article 

    Google Scholar 

  • 29.

    Lewandrowski, W., Erickson, T. E., Dixon, K. W. & Stevens, J. C. Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. J. Appl. Ecol. 54, 997–1007 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Ladouceur, E. & Shackelford, N. The power of data synthesis to shape the future of the restoration community and capacity. Restor. Ecol. 29, e13251 (2020).

    Google Scholar 

  • 31.

    Temperton, V. M., Baasch, A., von Gillhaussen, P. & Kirmer, A. in Foundations of Restoration Ecology (eds. Palmer, M. A., Zedler, J. B. & Falk, D. A.) 245–270 (Island Press/Center for Resource Economics, 2016); https://doi.org/10.5822/978-1-61091-698-1_9

  • 32.

    Hulvey, K. B. & Aigner, P. A. Using filter-based community assembly models to improve restoration outcomes. J. Appl. Ecol. 51, 997–1005 (2014).

    Article 

    Google Scholar 

  • 33.

    van Wilgen, B. W. The evolution of fire and invasive alien plant management practices in fynbos. S. Afr. J. Sci. 105, 335–342 (2009).

    Google Scholar 

  • 34.

    Arianoutsoua, M. & Vilà, M. Fire and invasive plant species in the Mediterranean Basin. Isr. J. Ecol. Evol. 58, 195–203 (2012).

    Google Scholar 

  • 35.

    Leger, E. A. & Baughman, O. W. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat. Areas. J. 35, 54–68 (2015).

    Article 

    Google Scholar 

  • 36.

    Porensky, L. M., Vaughn, K. J. & Young, T. P. Can initial intraspecific spatial aggregation increase multi-year coexistence by creating temporal priority? Ecol. Appl. 22, 927–936 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 37.

    FAOSTAT Statistical Database (Food and Agriculture Organization of the United Nations, 1997).

  • 38.

    Balazs, K. R. et al. The right trait in the right place at the right time: matching traits to environment improves restoration outcomes. Ecol. Appl. 30, e02110 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 39.

    Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).

    Article 

    Google Scholar 

  • 40.

    Brown, C. S. & Bugg, R. L. Effects of established perennial grasses on introduction of native forbs in California. Restor. Ecol. 9, 38–48 (2001).

    Article 

    Google Scholar 

  • 41.

    Porensky, L. M. et al. Arid old-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs. Agric. Ecosyst. Environ. 184, 135–144 (2014).

    Article 

    Google Scholar 

  • 42.

    Hardegree, S. P. et al. Hydrothermal assessment of temporal variability in seedbed microclimate. Rangel. Ecol. Manag. 66, 127–135 (2013).

    Article 

    Google Scholar 

  • 43.

    Copeland, S. M. et al. Long-term trends in restoration and associated land treatments in the southwestern United States. Restor. Ecol. 26, 311–322 (2018).

    Article 

    Google Scholar 

  • 44.

    Abella, S. R., Craig, D. J., Smith, S. D. & Newton, A. C. Identifying native vegetation for reducing exotic species during the restoration of desert ecosystems. Restor. Ecol. 20, 781–787 (2012).

    Article 

    Google Scholar 

  • 45.

    Mulroy, T. W. & Rundel, P. W. Annual plants: adaptations to desert environments. BioScience 27, 109–114 (1977).

    Article 

    Google Scholar 

  • 46.

    Leger, E. A., Goergen, E. M. & Forbis de Queiroz, T. Can native annual forbs reduce Bromus tectorum biomass and indirectly facilitate establishment of a native perennial grass? J. Arid. Environ. 102, 9–16 (2014).

    Article 

    Google Scholar 

  • 47.

    Gutiérrez, J. R., Arancio, G. & Jaksic, F. M. Variation in vegetation and seed bank in a Chilean semi-arid community affected by ENSO 1997. J. Veg. Sci. 11, 641–648 (2000).

    Article 

    Google Scholar 

  • 48.

    Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Baskin, C. C. Seed ecology: a diverse and vibrant field of study. Seed Sci. Res. 27, 61–64 (2017).

    Article 

    Google Scholar 

  • 50.

    Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).

    Article 

    Google Scholar 

  • 51.

    SER International Primer on Ecological Restoration (SER, 2004).

  • 52.

    The Plant List (WFO, 2013).

  • 53.

    Seed Information Database (Royal Botanic Gardens, Kew, 2019).

  • 54.

    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).

    Article 

    Google Scholar 

  • 55.

    USDA, NRCS. The PLANTS Database (National Plant Data Team, 2020).

  • 56.

    Western Australian Herbarium. FloraBase—the Western Australian Flora (Department of Biodiversity, Conservation and Attractions, 1998).

  • 57.

    Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).

  • 58.

    Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database, v3 (CGIAR Consortium for Spatial Information, 2019).

  • 59.

    Barrow, C. J. World atlas of desertification (United Nations Environment Programme). Land Degrad. Dev. 3, 249–249 (1992).

    Article 

    Google Scholar 

  • 60.

    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).

    Article 

    Google Scholar 

  • 61.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).

  • 62.

    Crawley, M. J. in The R Book 569–591 (Wiley, 2007).

  • 63.

    Wortley, L., Hero, J.-M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Reducing emissions by decarbonizing industry

    Quality assessment of Urochloa (syn. Brachiaria) seeds produced in Cameroon