in

Drivers of spatio-temporal variation in mosquito submissions to the citizen science project ‘Mückenatlas’

  • 1.

    Paupy, C., Delatte, H., Bagny, L., Corbel, V. & Fontenille, D. Aedes albopictus, an arbovirus vector: From the darkness to the light. Microbes Infect. 11, 1177–1185 (2009).

    CAS  PubMed  Article  Google Scholar 

  • 2.

    Scholte, E. J. & Schaffner, F. Waiting for the tiger: Establishment and spread of the Aedes albopictus mosquito in Europe. In Emerging Pests and Vector-Borne Diseases in Europe (eds Takken, W. & Knols, B. G. J.) 241–260 (Wageningen Academic Publishers, Wageningen, 2007).

    Google Scholar 

  • 3.

    Kraemer, M. U. G. et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 4, 854–863. https://doi.org/10.1038/s41564-019-0376-y (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 4.

    Kuhlisch, C., Kampen, H. & Walther, D. The Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Central Germany: Surveillance in its northernmost distribution area. Acta Trop. 188, 78–85 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 5.

    Kampen, H. & Walther, D. Vector potential of mosquito species (Diptera: Culicidae) occurring in Central Europe. In Mosquito-borne Diseases: Implications for Public Health, Parasitol. Res. Monogr. Vol. 10 (eds Benelli, G. & Mehlhorn, H.) 41–68 (Springer, Heidelberg, 2018).

    Google Scholar 

  • 6.

    Kampen, H., Schuhbauer, A. & Walther, D. Emerging mosquito species in Germany—A synopsis after 6 years of mosquito monitoring (2011–2016). Parasitol. Res. 116, 3253–3263 (2017).

    PubMed  Article  PubMed Central  Google Scholar 

  • 7.

    Ziegler, U. et al. West Nile virus epidemic in Germany triggered by epizootic emergence, 2019. Viruses 12, 448. https://doi.org/10.3390/v12040448 (2020).

    Article  PubMed Central  Google Scholar 

  • 8.

    Sullivan, B. L. et al. The eBird enterprise: An integrated approach to development and application of citizen science. Biol. Conserv. 169, 31–40 (2014).

    Article  Google Scholar 

  • 9.

    Oltra, A., Palmer, J. R. B. & Bartumeus, F. AtrapaelTigre.com: Enlisting citizen-scientists in the war on tiger mosquitoes. In European Handbook of Crowdsourced Geographic Information (eds Capineri, C. et al.) 295–308 (Ubiquity Press, London, 2016).

    Google Scholar 

  • 10.

    Heigl, F., Horvath, K., Laaha, G. & Zaller, J. G. Amphibian and reptile road-kills on tertiary roads in relation to landscape structure: Using a citizen science approach with open-access land cover data. BMC Ecol. 17, 24. https://doi.org/10.1186/s12898-017-0134-z (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 11.

    Walther, D. & Kampen, H. The citizen science project “Mueckenatlas” helps monitor the distribution and spread of invasive mosquito species in Germany. J. Med. Entomol. 54, 1790–1794 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  • 12.

    Pocock, M. J. O., Roy, H. E., Fox, R., Ellis, W. N. & Botham, M. Citizen science and invasive alien species: Predicting the detection of the oak processionary moth Thaumetopoea processionea by moth recorders. Biol. Conserv. 208, 146–154 (2017).

    Article  Google Scholar 

  • 13.

    Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Further specimens of the Asian tiger mosquito Aedes albopictus (Diptera, Culicidae) trapped in Southwest Germany. Parasitol. Res. 112, 905–907 (2013).

    PubMed  Article  PubMed Central  Google Scholar 

  • 14.

    Kampen, H., Kuhlisch, C., Fröhlich, A., Scheuch, D. E. & Walther, D. Occurrence and spread of the invasive Asian bush mosquito Aedes japonicus japonicus (Diptera: Culicidae) in West and North Germany since detection in 2012 and 2013, respectively. PLoS ONE 11, e0167948. https://doi.org/10.1371/journal.pone.0167948 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 15.

    Walther, D., Scheuch, D. E. & Kampen, H. The invasive Asian tiger mosquito Aedes albopictus (Diptera: Culicidae) in Germany: Local reproduction and overwintering. Acta Trop. 166, 186–192 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 16.

    Werner, D. & Kampen, H. Aedes albopictus breeding in southern Germany, 2014. Parasitol. Res. 114, 831–834 (2015).

    PubMed  Article  PubMed Central  Google Scholar 

  • 17.

    Zielke, D. E., Walther, D. & Kampen, H. Newly discovered population of Aedes japonicus japonicus (Diptera: Culicidae) in upper Bavaria, Germany, and Salzburg, Austria, is closely related to the Austrian/Slovenian bush mosquito population. Parasit. Vectors 9, 163. https://doi.org/10.1186/s13071-016-1447-z (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 18.

    Kampen, H., Jansen, S., Schmidt-Chanasit, J. & Walther, D. Indoor development of Aedes aegypti in Germany, 2016. Euro Surveill. 21, 30407. https://doi.org/10.2807/1560-7917.ES.2016.21.47.30407 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • 19.

    Werner, D., Zielke, D. E. & Kampen, H. First record of Aedes koreicus (Diptera: Culicidae) in Germany. Parasitol. Res. 115, 1331–1334 (2016).

    PubMed  Article  Google Scholar 

  • 20.

    Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Three rarely encountered and one new Culiseta species (Diptera: Culicidae) in Germany. J. Eur. Mosq. Control Assoc. 31, 36–39 (2013).

    Google Scholar 

  • 21.

    Kampen, H., Kronefeld, M., Zielke, D. & Werner, D. Some new, rare and less frequent mosquito species (Diptera, Culicidae) recently collected in Germany. Mitt. Dtsch. Ges. Allg. Angew. Ent. 19, 123–130 (2014).

    Google Scholar 

  • 22.

    Isaac, N. J. B. et al. Statistics for citizen science: Extracting signals of change from noisy ecological data. Methods Ecol. Evol. 5, 1052–1060 (2014).

    Article  Google Scholar 

  • 23.

    Kuhlisch, C., Kampen, H. & Werner, D. On the distribution and ecology of Culiseta (Culicella) ochroptera (Peus) (Diptera: Culicidae) in Germany. Zootaxa 4576, 544–558 (2019).

    Article  Google Scholar 

  • 24.

    Heym, E. C., Schröder, J., Kampen, H. & Walther, D. The nuisance mosquito Anopheles plumbeus (Stephens, 1828) in Germany—A questionnaire survey may help support surveillance and control. Front. Public Health 5, 278. https://doi.org/10.3389/fpubh.2017.00278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  • 25.

    Zielke, D. Population genetics and distribution of the invasive mosquito Aedes japonicus japonicus (Diptera: Culicidae) in Germany and Europe (Ph.D. thesis, University of Greifswald, 2015).

  • 26.

    Kerkow, A. et al. What makes the Asian bush mosquito Aedes japonicus japonicus feel comfortable in Germany? A fuzzy modelling approach. Parasit. Vectors 12, 106. https://doi.org/10.1186/s13071-019-3368-0 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • 27.

    Boakes, E. H. et al. Patterns of contribution to citizen science biodiversity projects increase understanding of volunteers’ recording behaviour. Sci. Rep. 6, 33051. https://doi.org/10.1038/srep33051 (2016).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 28.

    Seymour, V. & Haklay, M. Exploring engagement characteristics and behaviours of environmental volunteers. Citiz. Sci. Theory Pract. 2, 5. https://doi.org/10.5334/cstp.66 (2017).

    Article  Google Scholar 

  • 29.

    Mair, L. & Ruete, A. Explaining spatial variation in the recording effort of citizen science data across multiple taxa. PLoS ONE 11, e0147796. https://doi.org/10.1371/journal.pone.0147796 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 30.

    Tiago, P., Ceia-Hasse, A., Marques, T. A., Capinha, C. & Pereira, H. M. Spatial distribution of citizen science casuistic observations for different taxonomic groups. Sci. Rep. 7, 12832. https://doi.org/10.1038/s41598-017-13130-8 (2017).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 31.

    Chandler, M. et al. Contributions to publications and management plans from 7 years of citizen science: Use of a novel evaluation tool on Earthwatch-supported projects. Biol. Conserv. 208, 163–173 (2017).

    Article  Google Scholar 

  • 32.

    Kelling, S. et al. Taking a “Big Data” approach to data quality in a citizen science project. Ambio 44, 601–611 (2015).

    PubMed  PubMed Central  Article  Google Scholar 

  • 33.

    Becker, N. et al. Mosquitoes and Their Control (Springer, Heidelberg, 2010).

    Google Scholar 

  • 34.

    Schaffner, F. et al. The Mosquitoes of Europe. An Identification and Training Programme (CD-Rom) (IRD Éditions & EID Méditerrannée, Montpellier, 2001).

    Google Scholar 

  • 35.

    Heym, E. C., Kampen, H. & Walther, D. Mosquito species composition and phenology (Diptera, Culicidae) in two German zoological gardens imply different risks of mosquito-borne pathogen transmission. J. Vector Ecol. 43, 80–88 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 36.

    European Union, Copernicus Land Monitoring Service. (European Environment Agency (EEA), 2012).

  • 37.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, New York, 2016).

    Google Scholar 

  • 38.

    Tennekes, M. treemap: Treemap Visualization. R package version 2.4-2 (2017).

  • 39.

    Comtois, D. summarytools: Tools to Quickly and Neatly Summarize Data. R package version 0.9.3 (2019).

  • 40.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, 2018).

    Google Scholar 

  • 41.

    Alender, B. Understanding volunteer motivations to participate in citizen science projects: A deeper look at water quality monitoring. J. Sci. Commun. 15, A04. https://doi.org/10.22323/2.15030204 (2016).

    Article  Google Scholar 

  • 42.

    Domroese, M. C. & Johnson, E. A. Why watch bees? Motivations of citizen science volunteers in the Great Pollinator Project. Biol. Conserv. 208, 40–47 (2017).

    Article  Google Scholar 

  • 43.

    Geoghegan, H., Dyke, A., Pateman, R., West, S. & Everett, G. Understanding Motivations for Citizen Science. Final report on behalf of UKEOF (University of Reading, Stockholm Environment Institute (University of York) and University of the West of England, 2016).

  • 44.

    Land-Zandstra, A. M., Devilee, J. L., Snik, F., Buurmeijer, F. & van den Broek, J. M. Citizen science on a smartphone: Participants’ motivations and learning. Public Underst. Sci. 25, 45–60 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 45.

    GeoBasis-DE/BKG. Bundesamt für Kartographie und Geodäsie. WFS service. http://sg.geodatenzentrum.de/wfs_dlm250_inspire?request=GetCapabilities&service=wfs (2019).

  • 46.

    Statistisches Bundesamt, Wiesbaden. https://ergebnisse.zensus2011.de/ (2015).

  • 47.

    Deutscher Wetterdienst (German Weather Service, single values averaged). https://opendata.dwd.de/climate_environment/ (2020).

  • 48.

    Pebesma, E. Simple Features for R: Standardized support for spatial vector data. R J. 10, 439–446. https://doi.org/10.32614/rj-2018-009 (2018).

    Article  Google Scholar 

  • 49.

    Cheng, J., Karambelkar, B. & Xie, Y. leaflet: Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library. R package version 2.0.3 (2019).

  • 50.

    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 2.8-19 (2019).

  • 51.

    Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.4-3 (2019).

  • 52.

    Baddeley, A., Rubak, E. & Turner, R. Spatial Point Patterns: Methodology and Applications with R (Chapman and Hall/CRC Press, Boca Raton, 2015).

    Google Scholar 

  • 53.

    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, Thousand Oaks, 2019).

    Google Scholar 

  • 54.

    Kleiber, C. & Zeileis, A. countreg: Count Data Regression. R package version 0.2-1 (2016).

  • 55.

    Barton, K. MuMIn: Multi-model Inference. R package version 1.43.6 (2019).

  • 56.

    Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S (Springer, New York, 2002).

    Google Scholar 

  • 57.

    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).

    Article  Google Scholar 

  • 58.

    Bertone, M. A. et al. Arthropods of the great indoors: Characterizing diversity inside urban and suburban homes. PeerJ 4, e1582. https://doi.org/10.7717/peerj.1582 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 59.

    Epps, M. J., Menninger, H. L., LaSala, N. & Dunn, R. R. Too big to be noticed: Cryptic invasion of Asian camel crickets in North American houses. PeerJ 2, e523. https://doi.org/10.7717/peerj.523 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • 60.

    Dunn, R. R. & Beasley, D. E. Democratizing evolutionary biology, lessons from insects. Curr. Opin. Insect Sci. 18, 89–92 (2016).

    PubMed  Article  PubMed Central  Google Scholar 

  • 61.

    Hamer, S. A., Curtis-Robles, R. & Hamer, G. L. Contributions of citizen scientists to arthropod vector data in the age of digital epidemiology. Curr. Opin. Insect Sci. 28, 98–104 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  • 62.

    Freitag, H., Pangantihon, C. V. & Njunjic, I. Three new species of Grouvellinus Champion, 1923 from Maliau Basin, Sabah, Borneo, discovered by citizen scientists during the first Taxon Expedition (Insecta, Coleoptera, Elmidae). ZooKeys 754, 1–21 (2018).

    Article  Google Scholar 

  • 63.

    Higa, M. et al. Mapping large-scale bird distributions using occupancy models and citizen data with spatially biased sampling effort. Divers. Distrib. 21, 46–54 (2015).

    Article  Google Scholar 

  • 64.

    Caputo, B. et al. ZanzaMapp: A scalable citizen science tool to monitor perception of mosquito abundance and nuisance in Italy and beyond. Int. J. Environ. Res. Public Health 17, 7872 (2020).

    PubMed Central  Article  Google Scholar 

  • 65.

    Curtis-Robles, R., Wozniak, E. J., Auckland, L. D., Hamer, G. L. & Hamer, S. A. Combining public health education and disease ecology research: Using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl. Trop. Dis. 9, e0004235. https://doi.org/10.1371/journal.pntd.0004235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  • 66.

    Soroye, P., Ahmed, N. & Kerr, J. T. Opportunistic citizen science data transform understanding of species distributions, phenology, and diversity gradients for global change research. Glob. Change Biol. 24, 5281–5291 (2018).

    ADS  Article  Google Scholar 

  • 67.

    Statistisches Bundesamt. Bevölkerungsdichte (Einwohner je km2) in Deutschland nach Bundesländern zum 31. Dezember 2019 (Statista GmbH, 2020).

  • 68.

    Newman, G. et al. Leveraging the power of place in citizen science for effective conservation decision making. Biol. Conserv. 208, 55–64 (2017).

    Article  Google Scholar 

  • 69.

    Becker, N. Microbial control of mosquitoes: Management of the upper Rhine mosquito population as a model programme. Parasitol. Today 13, 485–487 (1997).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • 70.

    Peus, F. Beiträge zur Faunistik und Ökologie der einheimischen Culiciden. I. Teil. Zeitschr. Desinfekt. 21(76–81), 92–98 (1929).

    Google Scholar 

  • 71.

    Vezzani, D. Artificial container-breeding mosquitoes and cemeteries: A perfect match. Trop. Med. Int. Health 12, 299–313 (2007).

    PubMed  Article  Google Scholar 

  • 72.

    Scharnweber, T. et al. Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecol. Manag. 262, 947–961 (2011).

    Article  Google Scholar 

  • 73.

    Oedekoven, C. S. et al. Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds. Methods Ecol. Evol. 8, 1690–1702 (2017).

    Article  Google Scholar 

  • 74.

    Catlin-Groves, C. L. The citizen science landscape: From volunteers to citizen sensors and beyond. Int. J. Zool. 2012, 349630 (2012).

    Article  Google Scholar 

  • 75.

    Kelling, S. et al. Using semistructured surveys to improve citizen science data for monitoring biodiversity. Bioscience 69, 170–179 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  • 76.

    Weiser, E. L. et al. Balancing sampling intensity against spatial coverage for a community science monitoring programme. J. Appl. Ecol. 56, 2252–2263 (2019).

    Article  Google Scholar 

  • 77.

    Mwangungulu, S. P. et al. Crowdsourcing vector surveillance: Using community knowledge and experiences to predict densities and distribution of outdoor-biting mosquitoes in rural Tanzania. PLoS ONE 11, e0156388. https://doi.org/10.1371/journal.pone.0156388 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • 78.

    Eritja, R. et al. First detection of Aedes japonicus in Spain: An unexpected finding triggered by citizen science. Parasit. Vectors 12, 53. https://doi.org/10.1186/s13071-019-3317-y (2019).

    Article  PubMed  PubMed Central  Google Scholar 


  • Source: Ecology - nature.com

    Professor Emeritus Peter Eagleson, pioneering hydrologist, dies at 92

    Concept for a hybrid-electric plane may reduce aviation’s air pollution problem