in

Dynamics in C, N, and P stoichiometry and microbial biomass following soil depth and vegetation types in low mountain and hill region of China

  • 1.

    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 162–1627. https://doi.org/10.1126/science.1097396 (2004).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. https://doi.org/10.1038/nature12670 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 3.

    Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci. Rep. 6, 19601–19609. https://doi.org/10.1038/srep19601 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfifield ratio” for the microbial biomass?. Biogeochemistry 85, 235–252. https://doi.org/10.2307/20456544 (2007).

    Article 

    Google Scholar 

  • 5.

    Wang, X. G. et al. Changes in soil C:N: P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087–114094. https://doi.org/10.1016/j.geoderma.2019.114087 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 6.

    Zhao, Z., Zhao, Z., Fu, B., Wang, J. G. & Tang, W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. J. Soils Sediments 21, 1–9. https://doi.org/10.1007/s11368-020-02809-7 (2021).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Wang, Z. C., Liu, S. S., Huang, C., Liu, Y. Y. & Bu, Z. J. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. CATENA 152, 1–8. https://doi.org/10.1016/j.catena.2016.12.022 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Saha, D., Kukal, S. S. & Bawa, S. S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks Hills of Lower Himalayas. Land Degrad. Dev. 25, 407–416. https://doi.org/10.1002/ldr.2151 (2014).

    Article 

    Google Scholar 

  • 9.

    Tan, W. F. et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 121, 22–30. https://doi.org/10.1016/j.catena.2014.04.014 (2014).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67. https://doi.org/10.1890/100001 (2011).

    Article 

    Google Scholar 

  • 11.

    Oost, K. V. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629. https://doi.org/10.1126/science.1145724 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99. https://doi.org/10.1016/j.catena.2017.02.003 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F. & Van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085. https://doi.org/10.2136/sssaj2004.0215 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 14.

    Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67. https://doi.org/10.1016/j.geoderma.2013.04.005 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 15.

    Zhang, K., Su, Y. Z. & Yang, R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. J. Soils Sediments 19, 49–57. https://doi.org/10.1007/s11368-018-2007-2 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Jobbagy, E. E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436. https://doi.org/10.2307/2641104 (2000).

    Article 

    Google Scholar 

  • 17.

    Fu, X.L., Shao, M.G., Wei, X.R., Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155, 31–35. https://doi.org/10.1016/j.geoderma.2009.11.020 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 18.

    Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F. & Eisenhauer, N. Land-Use type effects on soil organic carbon and microbial properties in a semiarid region of Northeast Brazil. Land Degrad. Dev. 27, 171–178. https://doi.org/10.1002/ldr.2282 (2016).

    Article 

    Google Scholar 

  • 19.

    Li, Y. Y., Shao, M. A., Zheng, J. Y. & Zhang, X. C. Spatial–temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere 15, 601–610. https://doi.org/10.1002/jpln.200521793 (2005).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Wang, T., Kang, F. F., Cheng, X. Q., Han, H. R. & Ji, W. J. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 163, 176–184. https://doi.org/10.1016/j.still.2016.05.015 (2016).

    Article 

    Google Scholar 

  • 21.

    An, S., Mentler, A., Mayer, H. & Blum, W. E. H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 81, 226–233. https://doi.org/10.1016/j.catena.2010.04.002 (2010).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 320. https://doi.org/10.1186/s40064-016-1935-9 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Chen, F. S., Zeng, D. H. & He, X. Y. Small-scale spatial variability of soil nutrients and vegetation properties in semi-arid Northern China. Pedosphere 16, 778–787. https://doi.org/10.1016/S1002-0160(06)60114-8 (2006).

    Article 

    Google Scholar 

  • 24.

    Xu, Q. F. & Xu, J. M. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere 13, 271–278. https://doi.org/10.1002/jpln.200390066 (2003).

    Article 

    Google Scholar 

  • 25.

    Ge, N. N. et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. CATENA 172, 148–157. https://doi.org/10.1016/j.catena.2018.08.021 (2019).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Fu, B. J., Chen, L. D. & Ma, K. M. The relationship between land use and soil conditions in the hilly area of Loess Plateau in Northern Shanxi. CATENA 39, 69–78. https://doi.org/10.1016/S0341-8162(99)00084-3 (2000).

    Article 

    Google Scholar 

  • 27.

    Xie, X. L., Sun, B., Zhou, H. Z. & Li, Z. P. Soil carbon stocks and their influencing factors under native vegetation in China. Acta Pedol. Sin. 41, 687–699 (2004).

    Google Scholar 

  • 28.

    Njeru, C. M. et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Reg. 10, 29–38. https://doi.org/10.1016/j.geodrs.2017.04.002 (2017).

    Article 

    Google Scholar 

  • 29.

    Yu, D. S. et al. Regional patterns of soil organic carbon stocks in China. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems: A review. Agric. Ecosyst. Environ. 99, 15–27. https://doi.org/10.1016/S0167-8809(03)00138-5 (2003).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Takimoto, A., Nair, P. K. R. & Nair, V. D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 125, 159–166. https://doi.org/10.1016/j.agee.2007.12.010 (2008).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Omonode, R. A. & Vyn, T. Vertical distribution ofsoil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agric. Ecosyst. Environ. 117, 159–170. https://doi.org/10.1016/j.agee.2006.03.031 (2006).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:C:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Walker, T. W. & Adams, A. F. R. Studies on soil organic matter. I. Soil Sci. 85, 307–318 (1958).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 35.

    Gao, J. L. et al. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China. Acta Ecol. Sin. https://doi.org/10.5846/stxb201804030756 (2019).

    Article 

    Google Scholar 

  • 36.

    Deng, J. et al. Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation. Forests 10, 261–275. https://doi.org/10.3390/f10030261 (2019).

    Article 

    Google Scholar 

  • 37.

    Yu, Z. P. et al. Temporal changes in soil C–N–P stoichiometry over the past 60 years across subtropical China. Global Change Biol. 24, 1308–1320 (2018).

    ADS 
    Article 

    Google Scholar 

  • 38.

    Mandal, A., Patra, A. K., Singh, D., Swarup, A. & Ebhin Masto, R. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98, 3585–3592. https://doi.org/10.1016/j.biortech.2006.11.027 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Jiang, Y., Zhao, T., Yan, H., Huang, Y. M. & An, S. S. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on loess hilly area. Bull. Soil Water Conserv. 33, 62–68 (2013) (in Chinese).

    CAS 

    Google Scholar 

  • 40.

    Devi, N. B. & Yadava, P. S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31, 220–227. https://doi.org/10.1016/j.apsoil.2005.05.005 (2006).

    Article 

    Google Scholar 

  • 41.

    Dong, W., Hu, C., Chen, S. & Zhang, Y. Tillage and residue s management effects on soil carbon and CO, emission in a wheat-corn double-cropping system. Nutr. Cycl. Agroecosyst. 83, 27–37. https://doi.org/10.1007/s10705-008-9195-x (2009).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Li, Y., Chang, S. X., Tian, L., Tian, L. & Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024 (2018).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. https://doi.org/10.1038/ngeo846 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 44.

    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 42, 2039–2043. https://doi.org/10.1016/j.soilbio.2010.06.026 (2010).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Shaw, K. Determination of organic carbon in soil and plant material. Soil Sci. 10, 316–326 (1959).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res 80, 201–213. https://doi.org/10.1016/j.still.2004.03.018 (2005).

    Article 

    Google Scholar 

  • 47.

    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3 (1990).

    CAS 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    For campus “porosity hunters,” climate resilience is the goal

    New “risk triage” platform pinpoints compounding threats to US infrastructure