Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 162–1627. https://doi.org/10.1126/science.1097396 (2004).
Google Scholar
Delgado-Baquerizo, M. et al. Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature 502, 672–676. https://doi.org/10.1038/nature12670 (2013).
Google Scholar
Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C–N–P imbalance in grasslands. Sci. Rep. 6, 19601–19609. https://doi.org/10.1038/srep19601 (2016).
Google Scholar
Cleveland, C. C. & Liptzin, D. C:N:P stoichiometry in soil: Is there a “Redfifield ratio” for the microbial biomass?. Biogeochemistry 85, 235–252. https://doi.org/10.2307/20456544 (2007).
Google Scholar
Wang, X. G. et al. Changes in soil C:N: P stoichiometry along an aridity gradient in drylands of northern China. Geoderma 361, 114087–114094. https://doi.org/10.1016/j.geoderma.2019.114087 (2019).
Google Scholar
Zhao, Z., Zhao, Z., Fu, B., Wang, J. G. & Tang, W. Characteristics of soil organic carbon fractions under different land use patterns in a tropical area. J. Soils Sediments 21, 1–9. https://doi.org/10.1007/s11368-020-02809-7 (2021).
Google Scholar
Wang, Z. C., Liu, S. S., Huang, C., Liu, Y. Y. & Bu, Z. J. Impact of land use change on profile distributions of organic carbon fractions in peat and mineral soils in Northeast China. CATENA 152, 1–8. https://doi.org/10.1016/j.catena.2016.12.022 (2017).
Google Scholar
Saha, D., Kukal, S. S. & Bawa, S. S. Soil organic carbon stock and fractions in relation to land use and soil depth in the degraded Shiwaliks Hills of Lower Himalayas. Land Degrad. Dev. 25, 407–416. https://doi.org/10.1002/ldr.2151 (2014).
Google Scholar
Tan, W. F. et al. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. CATENA 121, 22–30. https://doi.org/10.1016/j.catena.2014.04.014 (2014).
Google Scholar
Finzi, A. C. et al. Responses and feedbacks of coupled biogeochemical cycles to climate change: Examples from terrestrial ecosystems. Front. Ecol. Environ. 9, 61–67. https://doi.org/10.1890/100001 (2011).
Google Scholar
Oost, K. V. et al. The impact of agricultural soil erosion on the global carbon cycle. Science 318, 626–629. https://doi.org/10.1126/science.1145724 (2007).
Google Scholar
Assefa, D. et al. Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. CATENA 153, 89–99. https://doi.org/10.1016/j.catena.2017.02.003 (2017).
Google Scholar
Kong, A. Y., Six, J., Bryant, D. C., Denison, R. F. & Van Kessel, C. The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078–1085. https://doi.org/10.2136/sssaj2004.0215 (2005).
Google Scholar
Dieleman, W. I. J., Venter, M., Ramachandra, A., Krockenberger, A. K. & Bird, M. I. Soil carbon stocks vary predictably with altitude in tropical forests: Implications for soil carbon storage. Geoderma 204–205, 59–67. https://doi.org/10.1016/j.geoderma.2013.04.005 (2013).
Google Scholar
Zhang, K., Su, Y. Z. & Yang, R. Variation of soil organic carbon, nitrogen, and phosphorus stoichiometry and biogeographic factors across the desert ecosystem of Hexi Corridor, northwestern China. J. Soils Sediments 19, 49–57. https://doi.org/10.1007/s11368-018-2007-2 (2019).
Google Scholar
Jobbagy, E. E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436. https://doi.org/10.2307/2641104 (2000).
Google Scholar
Fu, X.L., Shao, M.G., Wei, X.R., Horton, R. Soil organic carbon and total nitrogen as affected by vegetation types in Northern Loess Plateau of China. Geoderma 155, 31–35. https://doi.org/10.1016/j.geoderma.2009.11.020 (2010).
Google Scholar
Ferreira, A. C. C., Leite, L. F. C., de Araújo, A. S. F. & Eisenhauer, N. Land-Use type effects on soil organic carbon and microbial properties in a semiarid region of Northeast Brazil. Land Degrad. Dev. 27, 171–178. https://doi.org/10.1002/ldr.2282 (2016).
Google Scholar
Li, Y. Y., Shao, M. A., Zheng, J. Y. & Zhang, X. C. Spatial–temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere 15, 601–610. https://doi.org/10.1002/jpln.200521793 (2005).
Google Scholar
Wang, T., Kang, F. F., Cheng, X. Q., Han, H. R. & Ji, W. J. Soil organic carbon and total nitrogen stocks under different land uses in a hilly ecological restoration area of North China. Soil Tillage Res. 163, 176–184. https://doi.org/10.1016/j.still.2016.05.015 (2016).
Google Scholar
An, S., Mentler, A., Mayer, H. & Blum, W. E. H. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. CATENA 81, 226–233. https://doi.org/10.1016/j.catena.2010.04.002 (2010).
Google Scholar
Shedayi, A. A., Xu, M., Naseer, I. & Khan, B. Altitudinal gradients of soil and vegetation carbon and nitrogen in a high altitude nature reserve of Karakoram ranges. Springerplus 5, 320. https://doi.org/10.1186/s40064-016-1935-9 (2016).
Google Scholar
Chen, F. S., Zeng, D. H. & He, X. Y. Small-scale spatial variability of soil nutrients and vegetation properties in semi-arid Northern China. Pedosphere 16, 778–787. https://doi.org/10.1016/S1002-0160(06)60114-8 (2006).
Google Scholar
Xu, Q. F. & Xu, J. M. Changes in soil carbon pools induced by substitution of plantation for native forest. Pedosphere 13, 271–278. https://doi.org/10.1002/jpln.200390066 (2003).
Google Scholar
Ge, N. N. et al. Soil texture determines the distribution of aggregate-associated carbon, nitrogen and phosphorous under two contrasting land use types in the Loess Plateau. CATENA 172, 148–157. https://doi.org/10.1016/j.catena.2018.08.021 (2019).
Google Scholar
Fu, B. J., Chen, L. D. & Ma, K. M. The relationship between land use and soil conditions in the hilly area of Loess Plateau in Northern Shanxi. CATENA 39, 69–78. https://doi.org/10.1016/S0341-8162(99)00084-3 (2000).
Google Scholar
Xie, X. L., Sun, B., Zhou, H. Z. & Li, Z. P. Soil carbon stocks and their influencing factors under native vegetation in China. Acta Pedol. Sin. 41, 687–699 (2004).
Njeru, C. M. et al. Assessing stock and thresholds detection of soil organic carbon and nitrogen along an altitude gradient in an east Africa mountain ecosystem. Geoderma Reg. 10, 29–38. https://doi.org/10.1016/j.geodrs.2017.04.002 (2017).
Google Scholar
Yu, D. S. et al. Regional patterns of soil organic carbon stocks in China. Environ. Manag. 85, 680–689. https://doi.org/10.1016/j.jenvman.2006.09.020 (2007).
Google Scholar
Albrecht, A. & Kandji, S. T. Carbon sequestration in tropical agroforestry systems: A review. Agric. Ecosyst. Environ. 99, 15–27. https://doi.org/10.1016/S0167-8809(03)00138-5 (2003).
Google Scholar
Takimoto, A., Nair, P. K. R. & Nair, V. D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 125, 159–166. https://doi.org/10.1016/j.agee.2007.12.010 (2008).
Google Scholar
Omonode, R. A. & Vyn, T. Vertical distribution ofsoil organic carbon and nitrogen under warm-season native grasses relative to croplands in west-central Indiana, USA. Agric. Ecosyst. Environ. 117, 159–170. https://doi.org/10.1016/j.agee.2006.03.031 (2006).
Google Scholar
Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:C:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).
Google Scholar
Walker, T. W. & Adams, A. F. R. Studies on soil organic matter. I. Soil Sci. 85, 307–318 (1958).
Google Scholar
Gao, J. L. et al. Ecological soil C, N, and P stoichiometry of different land use patterns in the agriculture-pasture ecotone of Northern China. Acta Ecol. Sin. https://doi.org/10.5846/stxb201804030756 (2019).
Google Scholar
Deng, J. et al. Nitrogen and phosphorus resorption in relation to nutrition limitation along the chronosequence of black locust (Robinia pseudoacacia L.) plantation. Forests 10, 261–275. https://doi.org/10.3390/f10030261 (2019).
Google Scholar
Yu, Z. P. et al. Temporal changes in soil C–N–P stoichiometry over the past 60 years across subtropical China. Global Change Biol. 24, 1308–1320 (2018).
Google Scholar
Mandal, A., Patra, A. K., Singh, D., Swarup, A. & Ebhin Masto, R. Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour. Technol. 98, 3585–3592. https://doi.org/10.1016/j.biortech.2006.11.027 (2007).
Google Scholar
Jiang, Y., Zhao, T., Yan, H., Huang, Y. M. & An, S. S. Effect of different land uses on soil microbial biomass carbon, nitrogen and phosphorus in three vegetation zones on loess hilly area. Bull. Soil Water Conserv. 33, 62–68 (2013) (in Chinese).
Google Scholar
Devi, N. B. & Yadava, P. S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-east India. Appl. Soil Ecol. 31, 220–227. https://doi.org/10.1016/j.apsoil.2005.05.005 (2006).
Google Scholar
Dong, W., Hu, C., Chen, S. & Zhang, Y. Tillage and residue s management effects on soil carbon and CO, emission in a wheat-corn double-cropping system. Nutr. Cycl. Agroecosyst. 83, 27–37. https://doi.org/10.1007/s10705-008-9195-x (2009).
Google Scholar
Li, Y., Chang, S. X., Tian, L., Tian, L. & Zhang, Q. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis. Soil Biol. Biochem. 121, 50–58. https://doi.org/10.1016/j.soilbio.2018.02.024 (2018).
Google Scholar
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340. https://doi.org/10.1038/ngeo846 (2010).
Google Scholar
Anderson, T. H. & Domsch, K. H. Soil microbial biomass: The eco-physiological approach. Soil Biol. Biochem. 42, 2039–2043. https://doi.org/10.1016/j.soilbio.2010.06.026 (2010).
Google Scholar
Shaw, K. Determination of organic carbon in soil and plant material. Soil Sci. 10, 316–326 (1959).
Google Scholar
Puget, P. & Lal, R. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected by tillage and land use. Soil Tillage Res 80, 201–213. https://doi.org/10.1016/j.still.2004.03.018 (2005).
Google Scholar
Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169. https://doi.org/10.1016/0038-0717(90)90046-3 (1990).
Google Scholar
Source: Ecology - nature.com