in

Early life neonicotinoid exposure results in proximal benefits and ultimate carryover effects

  • 1.

    Mineau, P. & Palmer, C. Neonicotinoid Insecticides and Birds: The Impact of the Nation’s Most Widely Used Insecticides on Birds. (American Bird Conservancy, USA, 2013).

  • 2.

    Simon-Delso, N. et al. Systemic insecticides (Neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 22, 5–34. https://doi.org/10.1007/s11356-014-3470-y (2015).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Jeschke, P., Nauen, R., Schindler, M. & Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 59, 2897–2908. https://doi.org/10.1021/jf101303g (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Tomizawa, M. & Casida, J. E. Selective toxicity of neonicotinoids attributable to specificity of insect and mammalian nicotining receptors. Annu. Rev. Entomol. 48, 339–364. https://doi.org/10.1146/annurev.ento.48.091801.112731 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 1–8. https://doi.org/10.1038/ncomms12459 (2016).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Pisa, L. et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: Impacts on organisms and ecosystems. Environ. Sci. Pollut. Res. 28, 1–49. https://doi.org/10.1007/s11356-017-0341-3 (2017).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Li, Y., Miao, R. & Khanna, M. Neonicotinoids and decline in bird biodiversity in the United States. Nat. Sustain. 3, 1027–1035. https://doi.org/10.1038/s41893-020-0582-x (2020).

    Article 

    Google Scholar 

  • 8.

    Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 7, 1. https://doi.org/10.1038/s41598-017-15446-x (2017).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Eng, M. L., Stutchbury, B. J. & Morrissey, C. A. A neonicotinoid insecticide reduces fueling and delays migration in songbirds. Science 80(365), 1177–1180. https://doi.org/10.1126/science.aaw9419 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Imidacloprid-treated seed ingestion has lethal effect on adult partridges and reduces both breeding investment and offspring immunity. Environ. Res. 136, 97–107. https://doi.org/10.1016/j.envres.2014.10.023 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Pandey, S. P. & Mohanty, B. The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary-thyroid axis of a wildlife bird. Chemosphere 122, 227–234. https://doi.org/10.1016/j.chemosphere.2014.11.061 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Tokumoto, J. et al. Effects of exposure to clothianidin on the reproductive system of male quails. J. Vet. Med. Sci. 75, 755–760. https://doi.org/10.1292/jvms.12-0544 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 13.

    Addy-Orduna, L. M., Brodeur, J. C. & Mateo, R. Oral acute toxicity of imidacloprid, thiamethoxam and clothianidin in eared doves: A contribution for the risk assessment of neonicotinoids in birds. Sci. Total Environ. 650, 1216–1223. https://doi.org/10.1016/j.scitotenv.2018.09.112 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Berheim, E. H. et al. Effects of Neonicotinoid Insecticides on Physiology and Reproductive Characteristics of Captive Female and Fawn White-tailed Deer. Sci. Rep. 9, 1–10. https://doi.org/10.1038/s41598-019-40994-9 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Wang, Y. et al. Unraveling the toxic effects of neonicotinoid insecticides on the thyroid endocrine system of lizards. Environ. Pollut. 258, 113731. https://doi.org/10.1016/j.envpol.2019.113731 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Khalil, S. R., Awad, A., Mohammed, H. H. & Nassan, M. A. Imidacloprid insecticide exposure induces stress and disrupts glucose homeostasis in male rats. Environ. Toxicol. Pharmacol. 55, 165–174. https://doi.org/10.1016/j.etap.2017.08.017 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Abou-Donia, M. B. et al. Imidacloprid induces neurobehavioral deficits and increases expression of glial fibrillary acidic protein in the motor cortex and hippocampus in offspring rats following in utero exposure. J. Toxicol. Environ. Heal. – Part A Curr. Issues 71, 119–130. https://doi.org/10.1080/15287390701613140 (2008).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Gawade, L., Dadarkar, S. S., Husain, R. & Gatne, M. A detailed study of developmental immunotoxicity of imidacloprid in Wistar rats. Food Chem. Toxicol. 51, 61–70. https://doi.org/10.1016/j.fct.2012.09.009 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 19.

    Mohanty, B., Pandey, S. P. & Tsutsui, K. Thyroid disrupting pesticides impair the hypothalamic-pituitary-testicular axis of a wildlife bird. Amandava amandava. Reprod. Toxicol. 71, 32–41. https://doi.org/10.1016/j.reprotox.2017.04.006 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Sun, Q. et al. Imidacloprid Promotes High Fat Diet-Induced Adiposity in Female C57BL/6J Mice and Enhances Adipogenesis in 3T3-L1 Adipocytes via the AMPK(alpha)-Mediated Pathway. J. Agric. Food Chem. 65, 6572–6581. https://doi.org/10.1021/acs.jafc.7b02584 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Sun, Q. et al. Imidacloprid promotes high fat diet-induced adiposity and insulin resistance in male C57BL/6J mice. J. Agric. Food Chem. 64, 9293–9306. https://doi.org/10.1021/acs.jafc.6b04322 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Park, Y. et al. Imidacloprid, a neonicotinoid insecticide, potentiates adipogenesis in 3T3-L1 adipocytes. J. Agric. Food Chem. 61, 255–259. https://doi.org/10.1021/jf3039814 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 23.

    Ricklefs, R. E., Stark, J. M. & Konarzewski, M. Internal constraints on growth in birds. in Avian Growth and Development. Evolution within the Altricial-Precocial Spectrum (eds Starck, J. M. & Ricklefs, R.E.) 266–287 (Oxford Ornithology Series, Oxford, 1998).

    Google Scholar 

  • 24.

    Bobek, S., Jastrzebski, M. & Pietras, M. Age-related changes in oxygen consumption and plasma thyroid hormone concentration in the young chicken. Gen. Comput. Endocrinol. 31, 169–174. https://doi.org/10.1016/0016-6480(77)90014-4 (1977).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. 16, 254–260. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).

    Article 
    PubMed 

    Google Scholar 

  • 26.

    Criscuolo, F., Monaghan, P., Nasir, L. & Metcalfe, N. B. Early nutrition and phenotypic development: “catch-up” growth leads to elevated metabolic rate in adulthood. Proc. Biol. Sci. 275(1642), 1565–1570. https://doi.org/10.1098/rspb.2008.0148 (2008).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B Biol. Sci. 363, 1635–1645. https://doi.org/10.1098/rstb.2007.0011 (2008).

    Article 

    Google Scholar 

  • 28.

    Lee, W. S., Monaghan, P. & Metcalfe, N. B. The pattern of early growth trajectories affects adult breeding performance. Ecology 93, 902–912. https://doi.org/10.1890/11-0890.1 (2012).

    Article 
    PubMed 

    Google Scholar 

  • 29.

    Zera, A. J. & Harshman, L. G. The Physiology of Life History Trade-Offs in Animals. Annu. Rev. Ecol. Syst. 32, 95–126. https://doi.org/10.1146/annurev.ecolsys.32.081501.114006 (2001).

    Article 

    Google Scholar 

  • 30.

    Botías, C., David, A., Hill, E. M. & Goulson, D. Quantifying exposure of wild bumblebees to mixtures of agrochemicals in agricultural and urban landscapes. Environ. Pollut. 222, 73–82. https://doi.org/10.1016/j.envpol.2017.01.001 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Hladik, M. L. & Kolpin, D. W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 13, 12. https://doi.org/10.1071/EN15061 (2016).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Morrissey, C. A. et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 74, 291–303. https://doi.org/10.1016/j.envint.2014.10.024 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 33.

    McNabb, F. M. A. The hypothalamic-pituitary-thyroid (HPT) axis in birds and its role in bird development and reproduction. Crit. Rev. Toxicol. 37(1–2), 163–193. https://doi.org/10.1080/10408440601123552 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Gobeli, A., Crossley, D., Johnson, J. & Reyna, K. The effects of neonicotinoid exposure on embryonic development and organ mass in northern bobwhite quail (Colinus virginianus). Comp. Biochem. Physiol. Part – C Toxicol. Pharmacol. 195, 9–15. https://doi.org/10.1016/j.cbpc.2017.02.001 (2017).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Mineau, P. & Callaghan, C. Neonicotinoid insecticides and bats: an assessment of the direct and indirect risks. (Canadian Wildlife Federation, 2018).

  • 36.

    Wilson, J. D., Morris, A. J., Arroyo, B. E., Clark, S. C. & Bradbury, R. B. A review of the abundance and diversity of invertebrate and plant foods of granivorous birds in northern Europe in relation to agricultural change. Agric. Ecosyst. Environ. 75, 13–30. https://doi.org/10.1016/S0167-8809(99)00064-X (1999).

    Article 

    Google Scholar 

  • 37.

    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: the scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).

    Article 

    Google Scholar 

  • 38.

    Spencer, K., Buchanan, K., Goldsmith, A. & Catchpole, C. Song as an honest signal of developmental stress in the zebra finch (Taeniopygia guttata). Horm. Behav. 44, 132–139. https://doi.org/10.1016/S0018-506X(03)00124-7 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Ayyanath, M.-M., Cutler, G. C., Scott-Dupree, C. D. & Sibley, P. K. Transgenerational Shifts in Reproduction Hormesis in Green Peach Aphid Exposed to Low Concentrations of Imidacloprid. PLoS One 8, e74532. https://doi.org/10.1371/journal.pone.0074532 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Calabrese, E. J. & Baldwin, L. A. Toxicology rethinks its central belief. Nature 421, 691–692. https://doi.org/10.1038/421691a (2003).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Lopez-Antia, A., Ortiz-Santaliestra, M. E., Mougeot, F. & Mateo, R. Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole. Ecotoxicology 22, 125–138. https://doi.org/10.1007/s10646-012-1009-x (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Rix, R. R., Ayyanath, M. M. & Christopher Cutler, G. Sublethal concentrations of imidacloprid increase reproduction, alter expression of detoxification genes, and prime Myzus persicae for subsequent stress. J. Pest Sci. (2004) 89, 581–589. https://doi.org/10.1007/s10340-015-0716-5 (2016).

    Article 

    Google Scholar 

  • 43.

    von Engelhardt, N. & Groothuis, T. G. G. Maternal hormones in avian eggs. in Hormones and Reproduction of Vertebrates: Birds, 1st edn. (eds Norris, D. & Lopez, K.) 91–127. https://doi.org/10.1016/C2009-0-01697-3 (Academic Press, 2011).

    Chapter 

    Google Scholar 

  • 44.

    Hulbert, A. J. Thyroid hormones and their effects: A new perspective. Biol. Rev. Camb. Philos. Soc. 75, 519–631. https://doi.org/10.1017/s146479310000556x (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 45.

    Darras, V. M. et al. Partial Food Restriction Increases Hepatic Inner Ring Deiodinating Activity in the Chicken and the Rat. Gen. Comp. Endocrinol. 100, 334–338. https://doi.org/10.1006/gcen.1995.1164 (1995).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Klandorf, H. & Harvey, S. Food intake regulation of circulating thyroid hormones in domestic fowl. Gen. Comp. Endocrinol. 60, 162–170. https://doi.org/10.1016/0016-6480(85)90310-7 (1985).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Reyns, G. E., Janssens, K. A., Buyse, J., Kühn, E. R. & Darras, V. M. Changes in thyroid hormone levels in chicken liver during fasting and refeeding. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 132(1), 239–245. https://doi.org/10.1016/s1096-4959(01)00528-0.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Harvey, S. & Klandorf, H. Reduced adrenocortical function and increased thyroid function in fasted and refed chickens. J. Endocrinol. 98, 129–135. https://doi.org/10.1677/joe.0.0980129 (1983).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 49.

    Rimbach, R., Pillay, N. & Schradin, C. Both thyroid hormone levels and resting metabolic rate decrease in African striped mice when food availability decreases. J. Exp. Biol. 220, 837–843. https://doi.org/10.1242/jeb.151449 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 50.

    Scott, I. & Evans, P. R. The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue liver and skeletal muscle: Implications for BMR/body mass relationships. Comp. Biochem. Physiol. Comp. Physiol. 103(2), 329–332. https://doi.org/10.1016/0300-9629(92)90589-I (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 51.

    Mesnage, R., Biserni, M., Genkova, D., Wesolowski, L. & Antoniou, M. N. Evaluation of neonicotinoid insecticides for oestrogenic, thyroidogenic and adipogenic activity reveals imidacloprid causes lipid accumulation. J. Appl. Toxicol. 38, 1483–1491. https://doi.org/10.1002/jat.3651 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 52.

    Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. 14(9), 343–348. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).

    Article 
    PubMed 

    Google Scholar 

  • 53.

    Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257. https://doi.org/10.1086/597548 (2009).

    Article 
    PubMed 

    Google Scholar 

  • 54.

    Swanson, D. L., Mckechnie, A. E. & Vézina, F. How low can you go ? An adaptive energetic framew ork for interpreting basal metabolic rate variation in endotherms. J. Comp. Physiol. B 187, 1039–1056. https://doi.org/10.1007/s00360-017-1096-3 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 55.

    Hao, C., Eng, M. L., Sun, F. & Morrissey, C. A. Part-per-trillion LC-MS/MS determination of neonicotinoids in small volumes of songbird plasma. Sci. Total Environ. 644, 1080–1087. https://doi.org/10.1016/j.scitotenv.2018.06.317 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 56.

    Taliansky-Chamudis, A., Gómez-Ramírez, P., León-Ortega, M. & García-Fernández, A. J. Validation of a QuECheRS method for analysis of neonicotinoids in small volumes of blood and assessment of exposure in Eurasian eagle owl (Bubo bubo) nestlings. Sci. Total Environ. 595, 93–100. https://doi.org/10.1016/j.scitotenv.2017.03.246 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Lemon, W. C. The energetics of lifetime reproductive success in the zebra finch Taeniopygia guttata. Physiol. Zool. 66, 946–963. https://doi.org/10.1086/physzool.66.6.30163748 (1993).

    Article 

    Google Scholar 

  • 58.

    Chastel, O., Lacroix, A. & Kersten, M. Pre-breeding energy requirements: thyroid hormone, metabolism and the timing of reproduction in house sparrows (Passer domesticus). J. Avian Biol. 34, 298–306. https://doi.org/10.1034/j.1600-048X.2003.02528.x (2003).

    Article 

    Google Scholar 

  • 59.

    Hicks, O. et al. The role of parasitism in the energy management of a free-ranging bird. J. Exp. Biol. 221(24), jeb190066. https://doi.org/10.1242/jeb.190066 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Guglielmo, C. G., McGuire, L. P., Gerson, A. R. & Seewagen, C. L. Simple, rapid, and non-invasive measurement of fat, lean, and total water masses of live birds using quantitative magnetic resonance. J. Ornithol. 152, 75–85. https://doi.org/10.1007/s10336-011-0724-z (2011).

    Article 

    Google Scholar 

  • 61.

    Le Pogam, A. et al. Wintering snow buntings elevate cold hardiness to extreme levels but show no changes in maintenance costs. Physiol. Biochem. Zool. 93, 417–433. https://doi.org/10.1086/711370 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 62.

    Lighton, J. R. B. Measuring Metabolic Rates, 2nd edn. https://doi.org/10.1093/oso/9780198830399.001.0001 (Oxford University Press, Oxford, 2018).

    Book 

    Google Scholar 

  • 63.

    Gessaman, J. A. & Nagy, K. A. Energy metabolism: Errors in gas-exchange conversion factors. Physiol. Zool. 61, 507–513. https://doi.org/10.1086/physzool.61.6.30156159 (1988).

    Article 

    Google Scholar 

  • 64.

    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical  Computing, Vienna, Austria, 2017).

  • 65.

    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).

    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Spatial models of giant pandas under current and future conditions reveal extinction risks

    Investigating materials for safe, secure nuclear power