in

Earthworm activity optimized the rhizosphere bacterial community structure and further alleviated the yield loss in continuous cropping lily (Lilium lancifolium Thunb.)

  • 1.

    Li, J. et al. Development, progress and future prospects in cryobiotechnology of Lilium spp. Plant Methods 15, 125 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Jin, L., Zhang, Y., Yan, L., Guo, Y. & Niu, L. Phenolic compounds and antioxidant activity of bulb extracts of six Lilium species native to China. Molecules 17, 9361–9378 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 3.

    Zhao, B., Zhang, J., Guo, X. & Wang, J. Microwave-assisted extraction, chemical characterization of polysaccharides from Lilium davidii var. unicolor Salisb and its antioxidant activities evaluation. Food Hydrocoll. 31, 346–356 (2013).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Wu, Z. et al. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily. World J. Microb. Biot. 31, 1227–1234 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Wu, Z. et al. Identification of autotoxins from root exudates of Lanzhou lily (Lilium davidii var. unicolor). Allelopathy J. 35, 35–48 (2015).

    Google Scholar 

  • 6.

    Vaitauskienė, K., Šarauskis, E., Naujokienė, V. & Liakas, V. The influence of free-living nitrogen-fixing bacteria on the mechanical characteristics of different plant residues under no-till and strip-till conditions. Soil Till. Res. 154, 91–102 (2015).

    Article 

    Google Scholar 

  • 7.

    Doornbos, R. F., van Loon, L. C. & Bakker, P. A. H. M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron. Sustain. Dev. 32, 227–243 (2012).

    Article 

    Google Scholar 

  • 8.

    Liu, X. et al. Long-term greenhouse cucumber production alters soil bacterial community structure. J. Soil Sci. Plant Nut. 20, 306–321 (2020).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Liu, X. et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 9, e86610 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Li, X., Ding, C., Zhang, T. & Wang, X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 72, 11–18 (2014).

    Article 
    CAS 

    Google Scholar 

  • 11.

    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 8, 6116 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Shang, Q. et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field. World J. Microb. Biot. 32, 95 (2016).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Wu, K. et al. Effects of bio-organic fertilizer plus soil amendment on the control of tobacco bacterial wilt and composition of soil bacterial communities. Biol. Fert. Soils 50, 961–971 (2014).

    Article 

    Google Scholar 

  • 14.

    Baćmaga, M., Wyszkowska, J. & Kucharski, J. The influence of chlorothalonil on the activity of soil microorganisms and enzymes. Ecotoxicology 27, 1188–1202 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Ding, H. et al. Influence of chlorothalonil and carbendazim fungicides on the transformation processes of urea nitrogen and related microbial populations in soil. Environ. Sci. Pollut. R. 26, 31133–31141 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Passari, A. K. et al. Biocontrol of Fusarium wilt of Capsicum annuum by rhizospheric bacteria isolated from turmeric endowed with plant growth promotion and disease suppression potential. Eur. J. Plant Pathol. 150, 831–846 (2018).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Wang, L. et al. Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil. Microb. Ecol. 73, 404–416 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Bi, Y. et al. Differential effects of two earthworm species on Fusarium wilt of strawberry. Appl. Soil Ecol. 126, 174–181 (2018).

    Article 

    Google Scholar 

  • 19.

    Zhao, F. et al. Vermicompost improves microbial functions of soil with continuous tomato cropping in a greenhouse. J. Soil Sediment 20, 380–391 (2020).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 21.

    Hermans, S. M. et al. Bacteria as emerging indicators of soil condition. Appl. Environ. Microb. 83, 13 (2017).

    Article 

    Google Scholar 

  • 22.

    Brown, M. E. & Chang, M. C. Y. Exploring bacterial lignin degradation. Curr. Opin. Chem. Biol. 19, 1–7 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 23.

    Tian, J., Pourcher, A., Bouchez, T., Gelhaye, E. & Peu, P. Occurrence of lignin degradation genotypes and phenotypes among prokaryotes. Appl. Microbiol. Biot. 98, 9527–9544 (2014).

    CAS 
    Article 

    Google Scholar 

  • 24.

    She, S. et al. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system. Arch. Microbiol. 199, 267–275 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Shen, Z. et al. Soils naturally suppressive to banana Fusarium wilt disease harbor unique bacterial communities. Plant Soil 393, 21–33 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Feng, X. Y. The taxonomic characteristics of various genera of terrestrial earthworms in China. Chin. J. Zool. 1, 44–47 (1985).

    Google Scholar 

  • 27.

    Wu, W. R. Studies on the Germplasm Resources and Quality Estimation of Dilong (Eartheworm) (Guangzhou University of Chinese Medicine, 2008).

    Google Scholar 

  • 28.

    Zhou, L. et al. Effects of lily/maize intercropping on rhizosphere microbial community and yield of Lilium davidii var. unicolor. J. Basic Microb. 58, 892–901 (2018).

    Article 

    Google Scholar 

  • 29.

    Shi, G. Y. et al. Soil fungal diversity loss and appearance of specific fungal pathogenic communities associated with the consecutive replant problem (CRP) in lily. Front. Microbiol. 11, 1649 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).

    Article 

    Google Scholar 

  • 31.

    Doran, J. W. & Zeiss, M. R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 15, 3–11 (2000).

    Article 

    Google Scholar 

  • 32.

    Kaneda, S., Ohkubo, S., Wagai, R. & Yagasaki, Y. Soil temperature and moisture-based estimation of rates of soil aggregate formation by the endogeic earthworm Eisenia japonica (Michaelsen, 1892). Biol. Fert. Soils 52, 789–797 (2016).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Bottinelli, N. et al. Earthworms accelerate soil porosity turnover under watering conditions. Geoderma 156, 43–47 (2010).

    ADS 
    Article 

    Google Scholar 

  • 34.

    Eriksen-Hamel, N. S. & Whalen, J. K. Impacts of earthworms on soil nutrients and plant growth in soybean and maize agroecosystems. Agric. Ecosyst. Environ. 120, 442–448 (2007).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Rousk, J., Brookes, P. C. & Baath, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42, 516–520 (2010).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Stiles, C. M. & Murray, T. D. Infection of field-grown winter wheat by cephalosporium gramineum and the effect of soil pH. Phytopathology 86, 177–183 (1996).

    Article 

    Google Scholar 

  • 37.

    Weyman-Kaczmarkowa, W. & Pedziwilk, Z. The development of fungi as affected by pH and type of soil, in relation to the occurrence of bacteria and soil fungistatic activity. Microbiol. Res. 155, 107–112 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Salmon, S. Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biol. Fert. Soils 34, 304–310 (2001).

    CAS 
    Article 

    Google Scholar 

  • 39.

    García-Montero, L. G., Valverde-Asenjo, I., Grande-Ortíz, M. A., Menta, C. & Hernando, S. Impact of earthworm casts on soil pH and calcium carbonate in black truffle burns. Agroforest. Syst. 87, 815–826 (2013).

    Article 

    Google Scholar 

  • 40.

    Bending, G. D., Turner, M. K. & Jones, J. E. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 34, 1073–1082 (2002).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Wang, H. et al. Effects of long-term application of organic fertilizer on improving organic matter content and retarding acidity in red soil from China. Soil Till. Res. 195, 104382 (2019).

    Article 

    Google Scholar 

  • 42.

    Blouin, M., Sery, N., Cluzeau, D., Brun, J. J. & Bédécarrats, A. Balkanized research in ecological engineering revealed by a bibliometric analysis of earthworms and ecosystem services. Environ. Manage. 52, 309–320 (2013).

    ADS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Wu, Y., Zhang, N., Wang, J. & Sun, Z. An integrated crop-vermiculture system for treating organic waste on fields. Eur. J. Soil Biol. 51, 8–14 (2012).

    Article 

    Google Scholar 

  • 44.

    Basker, A., Macgregor, A. N. & Kirkman, J. H. Influence of soil ingestion by earthworms on the availability of potassium in soil: An incubation experiment. Biol. Fert. Soils 14, 300–303 (1992).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Canellas, L. P., Olivares, F. L., Okorokova-Facanha, A. L. & Facanha, A. R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 130, 1951–1957 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Dvorak, J. et al. Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. Dev. Comp. Immunol. 57, 67–74 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 47.

    Ma, X., Xing, M., Wang, Y., Xu, Z. & Yang, J. Microbial enzyme and biomass responses: Deciphering the effects of earthworms and seasonal variation on treating excess sludge. J. Environ. Manage. 170, 207–214 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 48.

    Groffman, P. M. et al. Earthworms increase soil microbial biomass carrying capacity and nitrogen retention in northern hardwood forests. Soil Biol. Biochem. 87, 51–58 (2015).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Gomez-Brandon, M., Lazcano, C., Lores, M. & Dominguez, J. Detritivorous earthworms modify microbial community structure and accelerate plant residue decomposition. Appl. Soil Ecol. 44, 237–244 (2010).

    Article 

    Google Scholar 

  • 50.

    Dempsey, M. A., Fisk, M. C. & Fahey, T. J. Earthworms increase the ratio of bacteria to fungi in northern hardwood forest soils, primarily by eliminating the organic horizon. Soil Biol. Biochem. 43, 2135–2141 (2011).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Wolfarth, F., Schrader, S., Oldenburg, E. & Weinert, J. Contribution of the endogeic earthworm species Aporrectodea caliginosa to the degradation of deoxynivalenol and Fusarium biomass in wheat straw. Mycotoxin Res. 27, 215–220 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 52.

    Paul, B. K., Lubbers, I. M. & van Groenigen, J. W. Residue incorporation depth is a controlling factor of earthworm-induced nitrous oxide emissions. Glob. Change Biol. 18, 1141–1151 (2012).

    ADS 
    Article 

    Google Scholar 

  • 53.

    Chen, Y., Chang, S. K. C., Chen, J., Zhang, Q. & Yu, H. Characterization of microbial community succession during vermicomposting of medicinal herbal residues. Bioresource Technol. 249, 542–549 (2018).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Tao, J. et al. Effects of earthworms on soil enzyme activity in an organic residue amended rice-wheat rotation agro-ecosystem. Appl. Soil Ecol. 42, 221–226 (2009).

    Article 

    Google Scholar 

  • 55.

    Bertrand, M. et al. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 35, 553–567 (2015).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Jayasinghe, B. A. T. D. & Parkinson, D. Earthworms as the vectors of actinomycetes antagonistic to litter decomposer fungi. Appl. Soil Ecol. 43, 1–10 (2009).

    Article 

    Google Scholar 

  • 57.

    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364 (2007).

    PubMed 
    Article 

    Google Scholar 

  • 58.

    Kopecky, J. et al. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest. Fems Microbiol. Ecol. 78, 386–394 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 59.

    Sun, J., Zhang, Q., Zhou, J. & Wei, Q. Pyrosequencing technology reveals the impact of different manure doses on the bacterial community in apple rhizosphere soil. Appl. Soil Ecol. 78, 28–36 (2014).

    Article 

    Google Scholar 

  • 60.

    Bull, A. T., Stach, J. E. M., Ward, A. C. & Goodfellow, M. Marine actinobacteria: perspectives, challenges, future directions. Anton. Leeuw. Int. J. G. 87, 65–79 (2005).

    Article 

    Google Scholar 

  • 61.

    Wang, Q. et al. Long-term fertilization changes bacterial diversity and bacterial communities in the maize rhizosphere of Chinese Mollisols. Appl. Soil Ecol. 125, 88–96 (2018).

    ADS 
    Article 

    Google Scholar 

  • 62.

    Jones, R. T. et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J. 3, 442–453 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 63.

    Liu, L. et al. Neorhizobium lilium sp. nov., an endophytic bacterium isolated from Lilium pumilum bulbs in Hebei province. Arch. Microbiol. 202, 609–616 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 64.

    Vessey, J. K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571–586 (2003).

    CAS 
    Article 

    Google Scholar 

  • 65.

    Taylor, W. J. & Draughon, F. A. Nannocystis exedens: A potential biocompetitive agent against Aspergillus flavus and Aspergillus parasiticus. J. Food Protect. 64, 1030–1034 (2001).

    CAS 
    Article 

    Google Scholar 

  • 66.

    Viswanathan, R. & Samiyappan, R. Induced systemic resistance by fluorescent pseudomonads against red rot disease of sugarcane caused by Colletotrichum falcatum. Crop Prot. 21, 1–10 (2002).

    Article 

    Google Scholar 

  • 67.

    Wolters, V. Invertebrate control of soil organic matter stability. Biol. Fert. Soils 31, 1–19 (2000).

    MathSciNet 
    CAS 
    Article 

    Google Scholar 

  • 68.

    Manna, M. C., Jha, S., Ghosh, P. K. & Achaya, C. L. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresource Technol. 88, 197–206 (2003).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Felten, D. & Emmerling, C. Earthworm burrowing behaviour in 2D terraria with single-and multi-species assemblages. Biol. Fert. Soils 45, 789–797 (2009).

    Article 

    Google Scholar 

  • 70.

    Wang, Z. et al. Soil protist communities in burrowing and casting hotspots of different earthworm species. Soil Biol. Biochem. 144, 107774 (2020).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Danielle, J., Yvan, C. & Daniel, C. Interactions between earthworm species in artificial soil cores assessed through the 3D reconstruction of the burrow systems. Geoderma 102, 123–137 (2001).

    Article 

    Google Scholar 

  • 72.

    Gomes, N. C. M. et al. Dynamics of fungal communities in bulk and maize rhizosphere soil in the tropics. Appl. Environ. Microb. 69, 3758–3766 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 73.

    Bao, S. D. Analytical Methods of Soil Agrochemistry 3rd edn. (China Agricultural Press, 2000).

    Google Scholar 

  • 74.

    Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 76.

    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Stackebrandt, E. & Goebel, B. M. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Micr. 44, 846–849 (1994).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    How diet affects tumors

    Coupling power and hydrogen sector pathways to benefit decarbonization