in

Eco-evolutionary responses of the microbial loop to surface ocean warming and consequences for primary production

  • 1.

    Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Riebesell U, Körtzinger A, Oschlies A. Sensitivities of marine carbon fluxes to ocean change. Proc Natl Acad Sci USA. 2009;106:20602–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:1–11.

    Google Scholar 

  • 4.

    Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, et al. Scientists’ warning to humanity: microorganisms and climate change. Nat Rev Microbiol. 2019;17:569–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Bopp L, Resplandy L, Orr JC, Doney SC, Dunne JP, Gehlen M, et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10:6225–45.

    Google Scholar 

  • 6.

    Oschlies A, Brandt P, Stramma L, Schmidtko S. Drivers and mechanisms of ocean deoxygenation. Nat Geosci. 2018;11:467–73.

    CAS 

    Google Scholar 

  • 7.

    Cazenave A, Llovel W. Contemporary sea level rise. Ann Rev Mar Sci. 2010;2:145–73.

    PubMed 

    Google Scholar 

  • 8.

    Frölicher TL, Ramseyer L, Raible CC, Rodgers KB, Dunne J. Potential predictability of marine ecosystem drivers. Biogeosciences. 2020;17:2061–83.

    Google Scholar 

  • 9.

    Taucher J, Oschlies A. Can we predict the direction of marine primary production change under global warming? Geophys Res Lett. 2011;38:L02603.

  • 10.

    Laufkötter C, Vogt M, Gruber N, Aita-Noguchi M, Aumont O, Bopp L, et al. Drivers and uncertainties of future global marine primary production in marine ecosystem models. Biogeosciences. 2015;12:6955–84.

    Google Scholar 

  • 11.

    Azam F, Fenchel T, Field JG, Gray J, Meyer-Reil L, Thingstad F. The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser. 1983:257–63.

  • 12.

    Fenchel T. The microbial loop–25 years later. J Exp Mar Biol Ecol. 2008;366:99–103.

    Google Scholar 

  • 13.

    Kirchman DL, Morán XAG, Ducklow H. Microbial growth in the polar oceans—role of temperature and potential impact of climate change. Nat Rev Microbiol. 2009;7:451–9.

    CAS 
    PubMed 

    Google Scholar 

  • 14.

    Aumont O, Éthé C, Tagliabue A, Bopp L, Gehlen M. PISCES-v2: An ocean biogeochemical model for carbon and ecosystem studies. Geosci Model Dev Discuss. 2015;8:2465–513.

  • 15.

    Vichi M, Masina S. Skill assessment of the PELAGOS global ocean biogeochemistry model over the period 1980–2000. Biogeosciences. 2009;6:2333–53.

    CAS 

    Google Scholar 

  • 16.

    Hasumi H, Nagata T. Modeling the global cycle of marine dissolved organic matter and its influence on marine productivity. Ecol Model. 2014;288:9–24.

    CAS 

    Google Scholar 

  • 17.

    Laufkötter C, Vogt M, Gruber N, Aumont O, Bopp L, Doney SC, et al. Projected decreases in future marine export production: the role of the carbon flux through the upper ocean ecosystem. Biogeosciences. 2016;13:4023–47.

    Google Scholar 

  • 18.

    Monroe JG, Markman DW, Beck WS, Felton AJ, Vahsen ML, Pressler Y. Ecoevolutionary dynamics of carbon cycling in the anthropocene. Trends Ecol Evol. 2018;33:213–25.

    PubMed 

    Google Scholar 

  • 19.

    Bennett AF, Dao KM, Lenski RE. Rapid evolution in response to high-temperature selection. Nature. 1990;346:79–81.

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Garud NR, Good BH, Hallatschek O, Pollard KS. Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol. 2019;17:e3000102.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Zhao S, Lieberman TD, Poyet M, Kauffman KM, Gibbons SM, Groussin M, et al. Adaptive evolution within gut microbiomes of healthy people. Cell Host Microbe. 2019;25:656–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Pomeroy LR, Williams PJleB, Azam F, Hobbie JE. The microbial loop. J Oceanogr. 2007;20:28–33.

    Google Scholar 

  • 23.

    Walworth NG, Zakem EJ, Dunne JP, Collins S, Levine NM. Microbial evolutionary strategies in a dynamic ocean. Proc Natl Acad Sci USA. 2020;117:5943–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Malik AA, Martiny JB, Brodie EL, Martiny AC, Treseder KK, Allison SD. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 2020;14:1–9.

    CAS 
    PubMed 

    Google Scholar 

  • 25.

    Saifuddin M, Bhatnagar JM, Segrè D, Finzi AC. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat Commun. 2019;10:1–10.

    CAS 

    Google Scholar 

  • 26.

    Muscarella ME, Howey XM, Lennon JT. Trait‐based approach to bacterial growth efficiency. Environ Microbiol. 2020;22:3494–3504.

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Roller BR, Stoddard SF, Schmidt TM. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat Microbiol. 2016;1:1–7.

    Google Scholar 

  • 28.

    Sarmiento JL, Gruber N. Ocean biogeochemical dynamics. Princeton University Press, 2006.

  • 29.

    Bendtsen J, Lundsgaard C, Middelboe M, Archer D. Influence of bacterial uptake on deep-ocean dissolved organic carbon. Glob Biogeocehm Cycles. 2002;16:74–1.

    Google Scholar 

  • 30.

    Chen B, Landry MR, Huang B, Liu H. Does warming enhance the effect of microzooplankton grazing on marine phytoplankton in the ocean? Limnol Oceanogr. 2012;57:519–26.

    CAS 

    Google Scholar 

  • 31.

    Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, et al. Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol. 2014;5:251.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Kiørboe T, Visser A, Andersen KH. A trait-based approach to ocean ecology. ICES Int J Mar Sci. 2018;75:1849–63.

    Google Scholar 

  • 33.

    Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am Nat. 1977;111:1169–94.

    Google Scholar 

  • 34.

    Polz MF, Cordero OX. Bacterial evolution: genomics of metabolic trade-offs. Nat Microbiol. 2016;1:1–2.

    Google Scholar 

  • 35.

    Carlson CA, Del Giorgio PA, Herndl GJ. Microbes and the dissipation of energy and respiration: from cells to ecosystems. J Oceanogr. 2007;20:89–100.

    Google Scholar 

  • 36.

    Arnosti C. Patterns of microbially driven carbon cycling in the ocean: links between extracellular enzymes and microbial communities. Adv Oceanogr. 2014;2014:706082.

  • 37.

    Pfeiffer T, Schuster S, Bonhoeffer S. Cooperation and competition in the evolution of ATP-producing pathways. Science. 2001;292:504–7.

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Button D. Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol. 1991;57:2033–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Metz JA, Nisbet RM, Geritz SA. How should we define ‘fitness’ for general ecological scenarios? Trends Ecol Evol. 1992;7:198–202.

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Geritz SA, Metz JA, Kisdi E, Meszéna G. Dynamics of adaptation and evolutionary´ branching. Phys Rev Lett. 1997;78:2024.

    CAS 

    Google Scholar 

  • 41.

    Abs E, Ferrière R. Modeling microbial dynamics and heterotrophic soil respiration: effect of climate change. Biogeochemical cycles: ecological drivers and environmental impact. 2020:103–29.

  • 42.

    Lipson DA. The complex relationship between microbial growth rate and yield and its implications for ecosystem processes. Front Microbiol. 2015;6:615.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Hansell DA, Carlson CA. Biogeochemistry of marine dissolved organic matter. Academic Press, 2014.

  • 44.

    Urban MC, De Meester L, Vellend M, Stoks R, Vanoverbeke J. A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evol Appl. 2012;5:154–67.

    PubMed 

    Google Scholar 

  • 45.

    Norberg J, Urban MC, Vellend M, Klausmeier CA, Loeuille N. Eco-evolutionary responses of biodiversity to climate change. Nat Clim Change. 2012;2:747–51.

    Google Scholar 

  • 46.

    Sarmento H, Montoya JM, Vázquez-Domínguez E, Vaqué D, Gasol JM. Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc Long B Biol Sci. 2010;365:2137–49.

    Google Scholar 

  • 47.

    Walther S, Voigt M, Thum T, Gonsamo A, Zhang Y, Köhler P, et al. Satellite chlorophyll fluorescence measurements reveal large-scale decoupling of photosynthesis and greenness dynamics in boreal evergreen forests. Glob Change Biol. 2016;22:2979–96.

    Google Scholar 

  • 48.

    Williams RG, Follows MJ. Ocean dynamics and the carbon cycle: Principles and mechanisms. Cambridge University Press, 2011.

  • 49.

    Lewis K, Van Dijken G, Arrigo KR. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science. 2020;369:198–202.

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Ward B, Collins S, Dutkiewicz S, Gibbs S, Bown P, Ridgwell A, et al. Considering the role of adaptive evolution in models of the ocean and climate system. J Adv Model Earth Syst. 2019;11:3343–61.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Vázquez-Domínguez E, Vaque D, Gasol JM. Ocean warming enhances respiration and carbon demand of coastal microbial plankton. Glob Change Biol. 2007;13:1327–34.

    Google Scholar 

  • 52.

    López-Urrutia A, Morán XAG. Resource limitation of bacterial production distorts´ the temperature dependence of oceanic carbon cycling. Ecology. 2007;88:817–22.

    PubMed 

    Google Scholar 

  • 53.

    Parker GA, Smith JM. Optimality theory in evolutionary biology. Nature. 1990;348:27–33.

    Google Scholar 

  • 54.

    Hammerstein P. Darwinian adaptation, population genetics and the streetcar theory of evolution. J Math Biol. 1996;34:511–32.

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Eshel I, Feldman MW, Bergman A. Long-term evolution, short-term evolution, and population genetic theory. J Theor Biol. 1998;191:391–6.

    Google Scholar 

  • 56.

    Hagerty SB, Allison SD, Schimel JP. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: implications for measurements and models. Biogeochemistry. 2018;140:269–83.

    CAS 

    Google Scholar 

  • 57.

    Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002;99:15112–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Marx CJ. Can you sequence ecology? Metagenomics of adaptive diversification. PLoS Biol. 2013;11:e1001487.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    O’Brien S, Hodgson DJ, Buckling A. The interplay between microevolution and community structure in microbial populations. Curr Opin Biotechnol. 2013;24:821–5.

    PubMed 

    Google Scholar 

  • 60.

    Scheuerl T, Hopkins M, Nowell RW, Rivett DW, Barraclough TG, Bell T. Bacterial adaptation is constrained in complex communities. Nat Commun. 2020;11:1–8.

    Google Scholar 

  • 61.

    Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, et al. Genomic variation landscape of the human gut microbiome. Nature. 2013;493:45–50.

    PubMed 

    Google Scholar 

  • 62.

    Boyd JA, Woodcroft BJ, Tyson GW. GraftM: a tool for scalable, phylogenetically informed classification of genes within metagenomes. Nucleic Acids Res. 2018;46:e59–9.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 63.

    Gregory AC, Gerhardt K, Zhong ZP, Bolduc B, Temperton B, Konstantinidis KT, et al. MetaPop: a pipeline for macro-and micro-diversity analyses and visualization of microbial and viral metagenome-derived populations. bioRxiv 2020. https://doi.org/10.1101/2020.11.01.363960.

  • 64.

    Coles VJ, Stukel MR, Brooks MT, Burd A, Crump BC, Moran MA, et al. Ocean biogeochemistry modeled with emergent trait-based genomics. Science. 2017;358:1149–1154.

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Scheinin M, Riebesell U, Rynearson TA, Lohbeck KT, Collins S. Experimental evolution gone wild. J R Soc Interface. 2015;12:20150056.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Thomas MK, Kremer CT, Klausmeier CA, Litchman E. A global pattern of thermal adaptation in marine phytoplankton. Science. 2012;338:1085–8.

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Grimaud GM, Le Guennec V, Ayata SD, Mairet F, Sciandra A, Bernard O. Modelling the effect of temperature on phytoplankton growth across the global ocean. IFACPapersOnLine. 2015;48:228–33.

    Google Scholar 

  • 68.

    Sauterey B, Ward B, Rault J, Bowler C, Claessen D. The implications of ecoevolutionary processes for the emergence of marine plankton community biogeography. Am Nat. 2017;190:116–30.

    PubMed 

    Google Scholar 

  • 69.

    Beckmann A, Schaum CE, Hense I. Phytoplankton adaptation in ecosystem models. J Theor Biol. 2019;468:60–71.

    PubMed 

    Google Scholar 

  • 70.

    Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea: viruses play critical roles in the structure and function of aquatic food webs. Bioscience. 1999;49:781–8.

    Google Scholar 

  • 71.

    Danovaro R, Corinaldesi C, Dell’Anno A, Fuhrman JA, Middelburg JJ, Noble RT, et al. Marine viruses and global climate change. FEMS Microbiol Rev. 2011;35:993–1034.

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Breitbart M, Bonnain C, Malki K, Sawaya NA. Phage puppet masters of the marine microbial realm. Nat Microbiol. 2018;3:754–66.

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Weitz JS, Stock CA, Wilhelm SW, Bourouiba L, Coleman ML, Buchan A, et al. A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes. ISME J. 2015;9:1352–64.

    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Gregory AC, Zayed AA, Conceição-Neto N, Temperton B, Bolduc B, Alberti A, et al. Marine DNA viral macro-and microdiversity from pole to pole. Cell. 2019;177:1109–23.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 


  • Source: Ecology - nature.com

    Millimeter-scale vertical partitioning of nitrogen cycling in hypersaline mats reveals prominence of genes encoding multi-heme and prismane proteins

    Diverse ecophysiological adaptations of subsurface Thaumarchaeota in floodplain sediments revealed through genome-resolved metagenomics