in

Ecological adaptation and phylogenetic analysis of microsymbionts nodulating Polhillia, Wiborgia and Wiborgiella species in the Cape fynbos, South Africa

[adace-ad id="91168"]
  • 1.

    Stirton, C. H. Polhillia, a new genus of papilionoid legumes endemic to South Africa. South African J. Bot. 52, 167–180 (1986).

    Google Scholar 

  • 2.

    Boatwright, J. S., Tilney, P. M. & Van Wyk, B.-E. Taxonomy of Wiborgiella (Crotalarieae, Fabaceae), a genus endemic to the greater Cape Region of South Africa. Syst. Bot. 35, 325–340 (2010).

    Google Scholar 

  • 3.

    Moiloa, N. A., Chimphango, S. B. M. & Muasya, A. M. A phylogenetic study of the genus Wiborgia (Crotalarieae, Fabaceae). South African J. Bot. 115, 179–193 (2018).

    Google Scholar 

  • 4.

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Goldblatt, P. & Manning, J. C. Plant diversity of the Cape region of southern Africa. Ann. Missouri Bot. Gard. 281–302 (2002).

  • 6.

    Forest, F., Colville, J. F. & Cowling, R. M. Evolutionary diversity patterns in the Cape flora of South Africa. in Phylogenetic Diversity 167–187 (Springer, 2018).

  • 7.

    Boatwright, J. S. & Cupido, C. N. Aspalathus crewiana sp. Nov. (Crotalarieae, Fabaceae) from the Western Cape Province, South Africa. Nord. J. Bot. 29, 513–517 (2011).

    Google Scholar 

  • 8.

    Mpai, T., Jaiswal, S. K. & Dakora, F. D. Accumulation of phosphorus and carbon and the dependency on biological N-2 fixation for nitrogen nutrition in Polhillia, Wiborgia and Wiborgiella species growing in natural stands in cape fynbos, South Africa. SYMBIOSIS (2020).

  • 9.

    Van Zwieten, L. et al. Enhanced biological N 2 fixation and yield of faba bean (Vicia faba L.) in an acid soil following biochar addition: Dissection of causal mechanisms. Plant Soil 395, 7–20 (2015).

    Google Scholar 

  • 10.

    Jaiswal, S. K., Naamala, J. & Dakora, F. D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol. Fertil. Soils https://doi.org/10.1007/s00374-018-1262-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Araújo, S. S. et al. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. CRC. Crit. Rev. Plant Sci. 34, 237–280 (2015).

    Google Scholar 

  • 12.

    Etesami, H., Alikhani, H. & Akbari, A. Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth. World Appl. Sci. J. 6, 1576–1584 (2009).

    CAS 

    Google Scholar 

  • 13.

    Ibny, F. Y. I., Jaiswal, S. K., Mohammed, M. & Dakora, F. D. Symbiotic effectiveness and ecologically adaptive traits of native rhizobial symbionts of Bambara groundnut (Vigna subterranea L. Verdc.) in Africa and their relationship with phylogeny. Sci. Rep. 9, 1–17 (2019).

    CAS 

    Google Scholar 

  • 14.

    Kanu, S. A. & Dakora, F. D. Symbiotic nitrogen contribution and biodiversity of root-nodule bacteria nodulating Psoralea species in the Cape Fynbos, South Africa. Soil Biol. Biochem. 54, 68–76 (2012).

    CAS 

    Google Scholar 

  • 15.

    Lemaire, B. et al. Symbiotic diversity, specificity and distribution of rhizobia in native legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 91, 2–17 (2015).

    Google Scholar 

  • 16.

    Brink, C., Postma, A. & Jacobs, K. Rhizobial diversity and function in rooibos (Aspalathus linearis) and honeybush (Cyclopia spp.) plants: A review. South African J. Bot. 110, 80–86 (2017).

    Google Scholar 

  • 17.

    Dludlu, M. N., Chimphango, S. B. M., Walker, G., Stirton, C. H. & Muasya, A. M. Horizontal gene transfer among rhizobia of the Core Cape Subregion of southern Africa. South African J. Bot. 118, 342–352 (2018).

    CAS 

    Google Scholar 

  • 18.

    Aliero, B. L. Effects of sulphuric acid, mechanical scarification and wet heat treatments on germination of seeds of African locust bean tree, Parkia biglobosa. African J. Biotechnol. 3, 179–181 (2004).

    CAS 

    Google Scholar 

  • 19.

    Hematifar, M., Tehranifar, A. & Abedi, B. Facilitating Seed Germination of Eight Species of Hawthorn (Crataegus spp.) Native of Iran, Using Chemical Scarification and Cold Stratification. Iran. J. Seed Res. 4, 13–22 (2018).

    Google Scholar 

  • 20.

    Vincent, J. M. A Manual for the Practical Study of Root-Nodule Bacteria: A Manual for the Practical Study of Root-Nodule Bacteria Vol. 15 (Blackwell Scientific, 1970).

    Google Scholar 

  • 21.

    Unkovich, M. & Baldock, J. Measurement of asymbiotic N2 fixation in Australian agriculture. Soil Biol. Biochem. 40, 2915–2921 (2008).

    CAS 

    Google Scholar 

  • 22.

    Somasegaran, P. & Hoben, H. J. Handbook for Rhizobia: Methods in Legume-Rhizobium Technology (Springer, 2012).

    Google Scholar 

  • 23.

    Sneath, P. H. A., Sokal, R. R. Numerical taxonomy. The principles and practice of numerical classification. (1973).

  • 24.

    Rohlf, F. J., Applied Biostatistics, I. & Exeter Software (Firm). NTSYS-pc : Numerical taxonomy and multivariate analysis system. (Applied Biostatistics, Inc., 2009).

  • 25.

    Hall, T. BioEdit version 7.0. 0. Distributed by the author, website: www.mbio.ncsu.edu/BioEdit/bioedit.html. (2004).

  • 26.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Nei, M. & Kumar, S. Molecular Evolution and Phylogenetics (Oxford University Press, 2000).

    Google Scholar 

  • 29.

    Saitou, N. & Nei, M. The neighbor-joining method : A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783–791 (1985).

    PubMed 

    Google Scholar 

  • 31.

    Morón, B. et al. Low pH changes the profile of nodulation factors produced by Rhizobium tropici CIAT899. Chem. Biol. 12, 1029–1040 (2005).

    PubMed 

    Google Scholar 

  • 32.

    Moroenyane, I., Chimphango, S. B. M., Wang, J., Kim, H. K. & Adams, J. M. Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa. Microb. Ecol. 72, 313–323 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Dabo, M., Jaiswal, S. K. & Dakora, F. D. Phylogenetic evidence of allopatric speciation of bradyrhizobia nodulating cowpea ( Vigna unguiculata L. walp ) in South African and Mozambican soils Department of Crop Sciences, Tshwane University of Technology, Private Bag Chemistry Department. Tshw. FEMS Microbiol. Ecol. 19, 1–14 (2019).

    Google Scholar 

  • 34.

    Singh, S. K., Jaiswal, S. K., Vaishampayan, A. & Dhar, B. Physiological behavior and antibiotic response of soybean (Glycine max L.) nodulating rhizobia isolated from Indian soils. African J. Microbiol. Res. 7, 2093–2102 (2013).

    Google Scholar 

  • 35.

    Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598 (2010).

    Google Scholar 

  • 36.

    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Maseko, S. T. & Dakora, F. D. Rhizosphere acid and alkaline phosphatase activity as a marker of P nutrition in nodulated Cyclopia and Aspalathus species in the Cape fynbos of South Africa. South African J. Bot. 89, 289–295 (2013).

    CAS 

    Google Scholar 

  • 38.

    Dludlu, M. N., Chimphango, S., Stirton, C. H. & Muasya, A. M. Differential preference of burkholderia and mesorhizobium to pH and soil types in the core cape subregion, South Africa. Genes 9, 2 (2017).

    PubMed Central 

    Google Scholar 

  • 39.

    Graham, P. H. et al. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 40, 198–207 (1994).

    CAS 

    Google Scholar 

  • 40.

    Fikri-Benbrahim, K., Chraibi, M., Lebrazi, S., Moumni, M. & Ismaili, M. Phenotypic and Genotypic Diversity and Symbiotic Effectiveness of Rhizobia Isolated from Acacia sp. Grown in Morocco. J. Agric. Sci. Technol. 19, (2017).

  • 41.

    Moumni, M., Fikri-Benbrahim, K., Ismaili, M., Lebrazi, S. & Chraibi, M. Phenotypic and G enotypic D iversity and S ymbiotic E ffectiveness of R hizobia I solated from Acacia sp. G rown in Morocco. JKUAT (2018). http://hdl.handle.net/123456789/3738

  • 42.

    Farissi, M. et al. Growth, nutrients concentrations, and enzymes involved in plants nutrition of alfalfa populations under saline conditions. (2014).

  • 43.

    Lebrazi, S. & Benbrahim, K. F. Environmental stress conditions affecting the N2 fixing Rhizobium-legume symbiosis and adaptation mechanisms. African J. Microbiol. Res. 8, 4053–4061 (2014).

    Google Scholar 

  • 44.

    Bhargava, Y., Murthy, J. S. R., Kumar, T. V. R. & Rao, M. N. Phenotypic, stress tolerance and plant growth promoting characteristics of rhizobial isolates from selected wild legumes of semiarid region, Tirupati, India. Adv. Microbiol. 6, 1 (2016).

    CAS 

    Google Scholar 

  • 45.

    Sankhla, I. S. et al. Molecular characterization of nitrogen fixing microsymbionts from root nodules of Vachellia (Acacia) jacquemontii, a native legume from the Thar Desert of India. Plant Soil 410, 21–40 (2017).

    CAS 

    Google Scholar 

  • 46.

    Rathi, S. et al. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol. Ecol. 94, 1–17 (2018).

    Google Scholar 

  • 47.

    Choudhary, D., Rai, M. K., Shekhawat, N. S. & Kataria, V. In vitro propagation of Farsetia macrantha Blatt. & Hallb.: An endemic and threatened plant of Indian Thar Desert. Plant Cell, Tissue Organ Cult. 142, 519–526 (2020).

    CAS 

    Google Scholar 

  • 48.

    de Castro Pires, R. et al. Soil characteristics determine the rhizobia in association with different species of Mimosa in central Brazil. Plant Soil 423, 411–428 (2018).

    Google Scholar 

  • 49.

    Verma, J. P., Yadav, J., Tiwari, K. N. & Kumar, A. Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol. Eng. 51, 282–286 (2013).

    Google Scholar 

  • 50.

    Datta, C. & Basu, P. S. Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol. Res. 155, 123–127 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Brink, C. J. Plant Growth-Promoting Properties of Fynbos Rhizobia and Their Diversity (Stellenbosch University, 2018).

    Google Scholar 

  • 52.

    Naamala, J., Jaiswal, S. K. & Dakora, F. D. Antibiotics resistance in Rhizobium: Type, process, mechanism and benefit for agriculture. Curr. Microbiol. 72, 804–816 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Baba, T. & Schneewind, O. Instruments of microbial warfare: Bacteriocin synthesis, toxicity and immunity. Trends Microbiol. 6, 66–71 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 54.

    Menezes, K. A. S., Nunes, G. F. O. & Sampaio, A. A. Diversity of new root nodule bacteria from Erythrina velutina Willd., a native legume from the Caatinga dry forest (Northeastern Brazil). Rev Cienc Agrárias 39, 222–233 (2016).

    Google Scholar 

  • 55.

    Pagano, M. C. Rhizobia associated with neotropical tree Centrolobium tomentosum used in riparian restoration. Plant, Soil Environ. 54, 498–508 (2008).

    CAS 

    Google Scholar 

  • 56.

    Hong, W., Zeng, J. & Xie, J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm. Sin. B 4, 258–265 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Elliott, G. N. et al. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100, 1403–1411 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Hassen, A. I., Bopape, F. L., Habig, J. & Lamprecht, S. C. Nodulation of rooibos (Aspalathus linearis Burm. f.), an indigenous South African legume, by members of both the α-proteobacteria and β-proteobacteria. Biol. Fertil. Soils 48, 295–303 (2012).

    CAS 

    Google Scholar 

  • 59.

    Gerding, M., O’Hara, G. W., Bräu, L., Nandasena, K. & Howieson, J. G. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia. Plant Soil 358, 385–401 (2012).

    CAS 

    Google Scholar 

  • 60.

    Lemaire, B. et al. Recombination and horizontal transfer of nodulation and ACC deaminase (acdS) genes within Alpha-and Beta-proteobacteria nodulating legumes of the Cape Fynbos biome. FEMS Microbiol. Ecol. 91, (2015).

  • 61.

    Gogarten, J. P., Doolittle, W. F. & Lawrence, J. G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19, 2226–2238 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Andrews, M. et al. Horizontal transfer of symbiosis genes within and between rhizobial genera: Occurrence and importance. Genes 9, 321 (2018).

    PubMed Central 

    Google Scholar 

  • 63.

    Turner, S. L. & Young, J. P. W. The glutamine synthetases of rhizobia : Phylogenetics and evolutionary implications. 17, 309–319 (2000).

  • 64.

    Gevers, D. et al. Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 3, 733 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Ormeño-Orrillo, E. et al. Phylogenetic evidence of the transfer of nodZ and nolL genes from Bradyrhizobium to other rhizobia. Mol. Phylogenet. Evol. 67, 626–630 (2013).

    PubMed 

    Google Scholar 

  • 66.

    Parker, M. A., Lafay, B., Burdon, J. J. & Van Berkum, P. Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobiumaa. Microbiology 148, 2557–2565 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Duran, D. et al. Bradyrhizobium paxllaeri sp. Nov. and Bradyrhizobium icense sp. Nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int. J. Syst. Evol. Microbiol. 64, 2072–2078 (2014).

    PubMed 

    Google Scholar 

  • 68.

    Grönemeyer, J. L., Kulkarni, A., Berkelmann, D., Hurek, T. & Reinhold-Hurek, B. Identification and characterization of rhizobia indigenous to the Okavango region in Sub-Saharan Africa. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02417-14 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Rogel, M. A., Ormeno-Orrillo, E. & Romero, E. M. Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst. Appl. Microbiol. 34, 96–104 (2011).

    PubMed 

    Google Scholar 

  • 70.

    Lindstrom, K., Murwira, M., Willems, A. & Altier, N. The biodiversity of beneficial microbe-host mutualism : The case of rhizobia. Res. Microbiol. 161, 453–463 (2010).

    PubMed 

    Google Scholar 

  • 71.

    Barcellos, F. G., Menna, P., da Silva Batista, J. S. & Hungria, M. Evidence of horizontal transfer of symbiotic genes from a Bradyrhizobium japonicum inoculant strain to indigenous diazotrophs Sinorhizobium (Ensifer) fredii and Bradyrhizobium elkanii in a Brazilian Savannah soil. Appl. Environ. Microbiol. 73, 2635–2643 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Jourand, P., Mateille, T., Fargette, M. & Rapior, S. Nematostatic activity of aqueous extracts of West African Crotalaria species. Nematology 6, 765–771 (2004).

    Google Scholar 

  • 73.

    Chen, W.-M. et al. Legume symbiotic nitrogen fixation by β-proteobacteria is widespread in nature. J. Bacteriol. 185, 7266–7272 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Aoki, S., Ito, M. & Iwasaki, W. From β-to α-proteobacteria: The origin and evolution of rhizobial nodulation genes nodIJ. Mol. Biol. Evol. 30, 2494–2508 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Moulin, L., Béna, G., Boivin-Masson, C. & Stkepkowski, T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol. Phylogenet. Evol. 30, 720–732 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Lu, Y. L. et al. Genetic diversity and biogeography of rhizobia associated with Caragana species in three ecological regions of China. Syst. Appl. Microbiol. 32, 351–361 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Ochman, H., Lawrence, J. G. & Groisman, E. A. Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 


  • Source: Ecology - nature.com

    Q&A: More-sustainable concrete with machine learning

    Krill and salp faecal pellets contribute equally to the carbon flux at the Antarctic Peninsula