Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).
Google Scholar
Alroy, J. The shifting balance of diversity among major marine animal groups. Science 321, 1191–1194 (2010).
Google Scholar
Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Nat. Acad. Sci. USA 113, 5036–5040 (2016).
Google Scholar
Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).
Google Scholar
Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
Google Scholar
Silvestro, D., Schitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).
Google Scholar
Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evolution 3, 1086–1092 (2019).
Google Scholar
Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B. Biol. Sci. 279, 1300–1309 (2011).
Google Scholar
Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Nat. Acad. Sci. USA 106, 13410–13414 (2009).
Google Scholar
Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).
Google Scholar
Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).
Google Scholar
Yan, H.-F. et al. What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae). N. Phytol. 219, 436–448 (2018).
Google Scholar
Lu, H. P., Yeh, Y. C., Shiah, F. K., Gong, G. C. & Hsieh, C. H. Evolutionary constraints on species diversity in marine bacterioplankton communities. ISME J. 13, 1032–1041 (2019).
Google Scholar
Miller, E. C., Hayashi, K. T., Song, D. Y. & Wiens, J. J. Explaining the ocean’s richest biodiversity hotspot and global patterns of fish diversity. Proc. R. Soc. B. Biol. Sci. 285, 20181314 (2018).
Tedesco, P. A., Paradis, E., Leveque, C. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2017).
Google Scholar
Lenzner, B. et al. Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytol. 229, 2998–3008 (2020).
Google Scholar
Gohli, J. et al. Biological factors contributing to bark and ambrosia beetle species diversifcation. Evolution 71, 1258–1272 (2017).
Google Scholar
Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Comm. 6, 8370 (2015).
Google Scholar
Castro-Insua, A., Gomez-Rodriguez, C., Wiens, J. J. & Baselga, A. Climatic niche divergence drivers patterns of diversification and richness among mammal families. Sci. Rep. 8, 8781 (2018).
Google Scholar
Dorchin, N., Harris, K. M. & Stireman, J. O. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): systematics, evolution of feeding modes and diversification rates. Mol. Phyl. Evol. 140, 106602 (2019).
Google Scholar
Lu, L. et al. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. Glob. Ecol. Biogeogr. 28, 891–903 (2019).
Google Scholar
Hernandez-Hernandez, T. & Wiens, J. J. Why are there so many flowering plants? A multi-scale analysis of plant diversification. Am. Nat. 195, 948–963 (2020).
Google Scholar
Paradis, E. Analysis of diversification: combining phylogenetic and taxonomic data. Proc. R. Soc. B. Biol. Sci. 270, 2499–2505 (2003).
Google Scholar
Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006).
Google Scholar
Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).
Google Scholar
Alroy, J. Geographical, environmental, and intrinsic biotic controls on Phanerozoic marine diversification. Paleontology 53, 1211–1235 (2010).
Google Scholar
Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).
Google Scholar
Sepkoski, J. J. A kinetic-model of phanerozoic taxonomic diversity III. post-paleozoic families and mass extinctions. Paleobiology 10, 246–267 (1984).
Google Scholar
Budd, G. E. & Mann, R. P. History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72, 2276–2291 (2018).
Google Scholar
Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B. 344, 305–311 (1994).
Google Scholar
Diaz, L. F. H., Harmon, L. J., Sugawara, M. T. C., Miller, E. T. & Pennell, M. W. Macroevolutionary diversification rates show time dependency. Proc. Nat. Acad. Sci. USA 116, 7403–7408 (2019).
Google Scholar
Gingerich, P. D. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113, 127–144 (2001).
Google Scholar
Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Nat. Acad. Sci. USA 108, 15908–15913 (2011).
Google Scholar
Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).
Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M. & Simberloff, D. Stochastic models of phylogeny and evolution of diversity. J. Geol. 81, 525–542 (1973).
Google Scholar
Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology 31, 6–20 (2005).
Google Scholar
Stanley, S. M. Macroevolution: Pattern and Process. (Freeman, 1979).
Strathmann, R. R. & Slatkin, M. The improbability of animal phyla with few species. Paleobiology 9, 97–106 (1983).
Google Scholar
Marshall, C. R. Five paleobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evolut. 1, 0165 (2017).
Google Scholar
Louca, S. & Pennell, M. W. Phylogenies of extant species are consistent with an infinite array of diversification histories. Nature 580, 502–505 (2019).
Google Scholar
Kozak, K. H. & Wiens, J. J. Testing the relationships between diversification, species richness, and trait evolution. Syst. Biol. 65, 975–988 (2016).
Google Scholar
Wiens, J. J. & Scholl, J. P. Diversification rates, clade ages, and macroevolutionary methods. Proc. Nat. Acad. Sci. USA 116, 24400 (2019).
Google Scholar
Wiens, J. J. Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. Ecol. Lett. 18, 1234–1241 (2015).
Google Scholar
Nee, S. Birth-death models in macroevolution. Ann. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).
Google Scholar
Scholl, J. P. & Wiens, J. J. Diversification rates and species richness across the Tree of Life. Proc. R. Soc. Lond. B 283, 20161334 (2016).
Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).
Google Scholar
Foote, M., Cooper, R. A., Crampton, J. S. & Sadler, P. M. Diversity-dependent evolutionary rates in early Palaeozoic zooplankton. Proc. R. Soc. Lond. B 285, 20180122 (2018).
Sadler, P. M., Cooper, R. A. & Melchin, M. J. Sequencing the graptoloid clade: building a global diversity curve from local range charts, regional composites and global time-lines. Proc. Yorks. Geol. Soc. 58, 329–343 (2011).
Google Scholar
Grassle, J. F. The Ocean Biogeographic Information System (OBIS): an on-line, worldwide atlas for accessing, modeling and mapping marine biological data in a multidimensional geographic context. Oceanography 13, 5–7 (2000).
Google Scholar
Le Loeuff, J. Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: how many dinosaur species went extinction at the Cretaceous–Tertiary boundary? Bull. Soc. Geìol. Fr. 183, 547–559 (2012).
Google Scholar
Benson, R. B. J. Dinosaur macroevolution and macroecology. Ann. Rev. Ecol. Evol. Syst. 49, 379–408 (2018).
Google Scholar
Adrain, J. M. A synopsis of Ordovician trilobite distribution and diversity. Geol. Soc. Lond. Memoirs. 38, 297–336 (2013).
Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geological Timescale 2012. (Elsevier, 2012).
Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).
Google Scholar
Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).
Google Scholar
Rabosky, D. L. Ecological limits on clade diversification in higher taxa. Am. Nat. 173, 662–674 (2009).
Google Scholar
Foote, M. Symmetric waxing and waning of invertebrate genera. Paleobiology 33, 517–529 (2007).
Google Scholar
Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).
Google Scholar
Source: Ecology - nature.com