in

Ecological and biogeographic drivers of biodiversity cannot be resolved using clade age-richness data

  • 1.

    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Alroy, J. The shifting balance of diversity among major marine animal groups. Science 321, 1191–1194 (2010).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 3.

    Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Nat. Acad. Sci. USA 113, 5036–5040 (2016).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Schluter, D. & Pennell, M. W. Speciation gradients and the distribution of biodiversity. Nature 546, 48–55 (2017).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Silvestro, D., Schitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 7.

    Maliet, O., Hartig, F. & Morlon, H. A model with many small shifts for estimating species-specific diversification rates. Nat. Ecol. Evolution 3, 1086–1092 (2019).

    Article 

    Google Scholar 

  • 8.

    Etienne, R. S. et al. Diversity-dependence brings molecular phylogenies closer to agreement with the fossil record. Proc. R. Soc. B. Biol. Sci. 279, 1300–1309 (2011).

    Article 

    Google Scholar 

  • 9.

    Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc. Nat. Acad. Sci. USA 106, 13410–13414 (2009).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Raup, D. M. Mathematical models of cladogenesis. Paleobiology 11, 42–52 (1985).

    Article 

    Google Scholar 

  • 11.

    Magallon, S. & Sanderson, M. J. Absolute diversification rates in angiosperm clades. Evolution 55, 1762–1780 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 12.

    Yan, H.-F. et al. What explains high plant richness in East Asia? Time and diversification in the tribe Lysimachieae (Primulaceae). N. Phytol. 219, 436–448 (2018).

    Article 

    Google Scholar 

  • 13.

    Lu, H. P., Yeh, Y. C., Shiah, F. K., Gong, G. C. & Hsieh, C. H. Evolutionary constraints on species diversity in marine bacterioplankton communities. ISME J. 13, 1032–1041 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Miller, E. C., Hayashi, K. T., Song, D. Y. & Wiens, J. J. Explaining the ocean’s richest biodiversity hotspot and global patterns of fish diversity. Proc. R. Soc. B. Biol. Sci. 285, 20181314 (2018).

  • 15.

    Tedesco, P. A., Paradis, E., Leveque, C. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2017).

    Article 

    Google Scholar 

  • 16.

    Lenzner, B. et al. Role of diversification rates and evolutionary history as a driver of plant naturalization success. New Phytol. 229, 2998–3008 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Gohli, J. et al. Biological factors contributing to bark and ambrosia beetle species diversifcation. Evolution 71, 1258–1272 (2017).

    PubMed 
    Article 

    Google Scholar 

  • 18.

    Wiens, J. J., Lapoint, R. T. & Whiteman, N. K. Herbivory increases diversification across insect clades. Nat. Comm. 6, 8370 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 19.

    Castro-Insua, A., Gomez-Rodriguez, C., Wiens, J. J. & Baselga, A. Climatic niche divergence drivers patterns of diversification and richness among mammal families. Sci. Rep. 8, 8781 (2018).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Dorchin, N., Harris, K. M. & Stireman, J. O. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): systematics, evolution of feeding modes and diversification rates. Mol. Phyl. Evol. 140, 106602 (2019).

    Article 

    Google Scholar 

  • 21.

    Lu, L. et al. Why is fruit colour so variable? Phylogenetic analyses reveal relationships between fruit-colour evolution, biogeography and diversification. Glob. Ecol. Biogeogr. 28, 891–903 (2019).

    Article 

    Google Scholar 

  • 22.

    Hernandez-Hernandez, T. & Wiens, J. J. Why are there so many flowering plants? A multi-scale analysis of plant diversification. Am. Nat. 195, 948–963 (2020).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Paradis, E. Analysis of diversification: combining phylogenetic and taxonomic data. Proc. R. Soc. B. Biol. Sci. 270, 2499–2505 (2003).

    Article 

    Google Scholar 

  • 24.

    Ricklefs, R. E. Global variation in the diversification rate of passerine birds. Ecology 87, 2468–2478 (2006).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Ricklefs, R. E. Estimating diversification rates from phylogenetic information. Trends Ecol. Evol. 22, 601–610 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Alroy, J. Geographical, environmental, and intrinsic biotic controls on Phanerozoic marine diversification. Paleontology 53, 1211–1235 (2010).

    Article 

    Google Scholar 

  • 27.

    Chao, A. & Jost, L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93, 2533–2547 (2012).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 28.

    Sepkoski, J. J. A kinetic-model of phanerozoic taxonomic diversity III. post-paleozoic families and mass extinctions. Paleobiology 10, 246–267 (1984).

    Article 

    Google Scholar 

  • 29.

    Budd, G. E. & Mann, R. P. History is written by the victors: the effect of the push of the past on the fossil record. Evolution 72, 2276–2291 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Nee, S., May, R. M. & Harvey, P. H. The reconstructed evolutionary process. Philos. Trans. R. Soc. Lond. B. 344, 305–311 (1994).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 31.

    Diaz, L. F. H., Harmon, L. J., Sugawara, M. T. C., Miller, E. T. & Pennell, M. W. Macroevolutionary diversification rates show time dependency. Proc. Nat. Acad. Sci. USA 116, 7403–7408 (2019).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Gingerich, P. D. Rates of evolution on the time scale of the evolutionary process. Genetica 112-113, 127–144 (2001).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Uyeda, J. C., Hansen, T. F., Arnold, S. J. & Pienaar, J. The million-year wait for macroevolutionary bursts. Proc. Nat. Acad. Sci. USA 108, 15908–15913 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).

    Article 

    Google Scholar 

  • 35.

    Raup, D. M., Gould, S. J., Schopf, T. J. M. & Simberloff, D. Stochastic models of phylogeny and evolution of diversity. J. Geol. 81, 525–542 (1973).

    ADS 
    Article 

    Google Scholar 

  • 36.

    Foote, M. Pulsed origination and extinction in the marine realm. Paleobiology 31, 6–20 (2005).

    Article 

    Google Scholar 

  • 37.

    Stanley, S. M. Macroevolution: Pattern and Process. (Freeman, 1979).

  • 38.

    Strathmann, R. R. & Slatkin, M. The improbability of animal phyla with few species. Paleobiology 9, 97–106 (1983).

    Article 

    Google Scholar 

  • 39.

    Marshall, C. R. Five paleobiological laws needed to understand the evolution of the living biota. Nat. Ecol. Evolut. 1, 0165 (2017).

    Article 

    Google Scholar 

  • 40.

    Louca, S. & Pennell, M. W. Phylogenies of extant species are consistent with an infinite array of diversification histories. Nature 580, 502–505 (2019).

    ADS 
    Article 
    CAS 

    Google Scholar 

  • 41.

    Kozak, K. H. & Wiens, J. J. Testing the relationships between diversification, species richness, and trait evolution. Syst. Biol. 65, 975–988 (2016).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Wiens, J. J. & Scholl, J. P. Diversification rates, clade ages, and macroevolutionary methods. Proc. Nat. Acad. Sci. USA 116, 24400 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 43.

    Wiens, J. J. Faster diversification on land than sea helps explain global biodiversity patterns among habitats and animal phyla. Ecol. Lett. 18, 1234–1241 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Nee, S. Birth-death models in macroevolution. Ann. Rev. Ecol. Evol. Syst. 37, 1–17 (2006).

    Article 

    Google Scholar 

  • 45.

    Scholl, J. P. & Wiens, J. J. Diversification rates and species richness across the Tree of Life. Proc. R. Soc. Lond. B 283, 20161334 (2016).

    Google Scholar 

  • 46.

    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Foote, M., Cooper, R. A., Crampton, J. S. & Sadler, P. M. Diversity-dependent evolutionary rates in early Palaeozoic zooplankton. Proc. R. Soc. Lond. B 285, 20180122 (2018).

    Google Scholar 

  • 48.

    Sadler, P. M., Cooper, R. A. & Melchin, M. J. Sequencing the graptoloid clade: building a global diversity curve from local range charts, regional composites and global time-lines. Proc. Yorks. Geol. Soc. 58, 329–343 (2011).

    Article 

    Google Scholar 

  • 49.

    Grassle, J. F. The Ocean Biogeographic Information System (OBIS): an on-line, worldwide atlas for accessing, modeling and mapping marine biological data in a multidimensional geographic context. Oceanography 13, 5–7 (2000).

    Article 

    Google Scholar 

  • 50.

    Le Loeuff, J. Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: how many dinosaur species went extinction at the Cretaceous–Tertiary boundary? Bull. Soc. Geìol. Fr. 183, 547–559 (2012).

    Article 

    Google Scholar 

  • 51.

    Benson, R. B. J. Dinosaur macroevolution and macroecology. Ann. Rev. Ecol. Evol. Syst. 49, 379–408 (2018).

    Article 

    Google Scholar 

  • 52.

    Adrain, J. M. A synopsis of Ordovician trilobite distribution and diversity. Geol. Soc. Lond. Memoirs38, 297–336 (2013).

    Article 

    Google Scholar 

  • 53.

    Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geological Timescale 2012. (Elsevier, 2012).

  • 54.

    Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 55.

    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Rabosky, D. L. Ecological limits on clade diversification in higher taxa. Am. Nat. 173, 662–674 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 57.

    Foote, M. Symmetric waxing and waning of invertebrate genera. Paleobiology 33, 517–529 (2007).

    Article 

    Google Scholar 

  • 58.

    Quental, T. B. & Marshall, C. R. How the Red Queen drives terrestrial mammals to extinction. Science 341, 290–292 (2013).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 


  • Source: Ecology - nature.com

    Ozone-depleting chemicals may spend less time in the atmosphere than previously thought

    Susan Solomon, scholar of atmospheric chemistry and environmental policy, delivers Killian Lecture